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Abstract

Weconsider 3-monotone approximation by piecewise polynomialswith prescribed knots.A general
theorem is proved,which reduces the problemof 3-monotone uniformapproximation of a 3-monotone
function, to convex localL1 approximation of the derivative of the function.As the corollarywe obtain
Jackson-type estimates on the degree of 3-monotone approximation by piecewise polynomials with
prescribed knots. Such estimates are well known for monotone and convex approximation, and to
the contrary, they in general are not valid for higher orders of monotonicity. Also we show that any
convexpiecewisepolynomial canbemodified tobe, inaddition, interpolatory,while still preserving the
degree of the uniform approximation. Alternatively, we show that we may smooth the approximating
piecewise polynomials to be twice continuously differentiable, while still being 3-monotone and still
keeping the same degree of approximation.
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1. Introduction

Let f be a real-valued function defined on the intervalI := [a, b], and� a natural number.
Denote by

f [x0, . . . , x�] :=
�∑
i=0

f (xi)∏�
j=0,j �=i (xi − xj )

,

the�th order divided difference off at the distinct pointsx0, . . . , x�. The functionf is called
�-monotone in[a, b], if f [x0, . . . , x�]�0 for all choices of�+1 distinct pointsx0, . . . , x� ∈
[a, b]. We denote by��[a,b] the set of all�-monotone functions in[a, b], so in particular,

�1[a,b] and�2[a,b] are the sets of non-decreasing and convex functions in[a, b], respectively.
It is well known that�3[a,b] is the set of all bounded functions, having a convex derivative
on (a, b). Note that iff ∈ ��[a,b], ��2, thenf is continuous on(a, b) andf (a+), f (b−)
exist and are finite. Thus, in the sequel we assume that our functions are continuous onI.
The problems of monotone and convex approximation, on a finite interval, by piece-

wise polynomials with prescribed knots have been considered among others by DeVore
[3], Beatson[1], Hu [5], Kopotun[8], and Shevchuk[12]. Higher-order shape-preserving
approximation, i.e.,�-monotone approximation,��3, has been investigated in recent years,
with somewhat surprising results. Namely, the pattern of positive and negative results, that
experts had believed prevail, which goes back to Shvedov[13] and shown to be valid for
� = 1,2, breaks down completely for��4 (see[7]). In fact, recent results by Konovalov
and Leviatan[7] about shape-preservingwidths demonstrate that, for��4, the statement “If
f ∈ ��[−1,1]∩C(�)[−1,1],and0�f (�)(x)�1,x ∈ [−1,1],then there is a piecewise polynomial
s ∈ ��[−1,1] of degree�� − 1with n equidistant knots such that|f (x)− s(x)|�c(�)n−�,
x ∈ [−1,1]”, is invalid.Moreover, for��4 the best order of approximation one can achieve
for the statement isn−3, and we have a loss of order ofn�−3. It is easy to construct splines
providing this estimate for� = 1 and 2. Indeed, one may take the interpolatory piecewise-
constant function and the inscribed polygon, respectively. Therefore, the only outstanding
question is the case� = 3. Does it follow the pattern known for� = 1,2, or does it belong
to the cases��4?
Forf ∈ C[a,b], and an intervalI ⊂ [a, b], we denote by‖f ‖I the usual sup-norm off on

I, and forh > 0 denote by�k(f, h; I ), thekthmodulus of smoothness off onI, with the step
h. For the interval[a, b] itself we write‖f ‖ := ‖f ‖[a,b] and�k(f, h) := �k(f, h; [a, b]).
Finally, we need the notation��

k (f, h) := ��
k (f, h; [a, b]), for the Ditzian–Totik[4] kth

modulus of smoothness off associated with the interval[a, b].
For a given functionF ∈ �3[a,b] ∩ C(2)[a,b], Konovalov and Leviatan[6] have constructed

a 3-monotone quadratic splineSwith n equidistant knots such that

‖F − S‖� c

n2
�1(F

′′, 1/n),

wherec = c(a, b) is an absolute constant independent ofF andn. This estimate provides
an exact order of 3-monotone approximation for certain Sobolev classes of functions, and
it was applied by Konovalov and Leviatan[7] to prove upper bounds on shape-preserving
widths.
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Recently Prymak[10] has extended the result of[6], constructing a 3-monotone piece-
wise quadratic with arbitrary prescribed knots which give an estimate of the degree of
approximation in terms of the third modulus of smoothness of the function. An immediate
consequence for the equidistant knots is that for eachF ∈ �3[a,b] there exists a piecewise

quadraticS ∈ �3[a,b] with n equidistant knots, for which

‖F − S‖�c�3(F, 1/n), (1)

for some absolute constantc = c(a, b).
Canoneachievehigher degreeof approximationwith 3-monotonepiecewisepolynomials

of degree higher than 2? The main purpose of this paper is to give an affirmative answer to
this question inmost of the conjectured cases, and to explain when it is impossible. One case
remains outstanding, we do not know whether an estimate involving the fourth modulus of
smoothness ofF is valid or not (see Remark 3 below).
In Section2 we state the main results and in Section3 we prove Theorem1 after an

auxiliary construction. InSection4weproveTheorem2, followedby theproof ofTheorem5
in Section5.

2. The main results

We begin with

Theorem 1. Let F ∈ �3[a,b] and f (x) := F ′(x), x ∈ (a, b). Given an integerk�2, a

partition a =: x0 < x1 < · · · < xn := b, and a piecewise polynomials ∈ �2[a,b] of degree
�k − 1,with knotsxi , i = 1, . . . , n− 1, such that

s(xi) = f (xi), i = 1, . . . , n− 1, (2)

there exists a piecewise polynomialS ∈ �3[a,b] of degree�k with knotsxi , i = 1, . . . , n−1,
for which

‖F − S‖�c max
1� i�n

‖f − s‖L1[xi−1,xi ] , (3)

where c is an absolute constant,and ‖·‖L1[xi−1,xi ] denotes theL1-norm on[xi−1, xi]. In
fact c�25.

Note that Theorem1reduces the problem of 3-monotone approximation of a 3-monotone
function in the uniform norm to that of convex approximation of its derivative with the
interpolation condition (2). Moreover the derivative is approximated locally in theL1-
norm. Since ordinary integration ofsnormally leads to a loss of an order of approximation
in the estimate, due to this local estimates, Theorem1 yields a “gain” of one order of
approximation.
Furthermore, aswewill show,wedonot require (2), but then the constantcmaydependon

the partition. To this end, we prove that any convex piecewise polynomial, (approximating
a convex function) can be modified in such a way that the modified piecewise polynomial
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interpolates the function at the knots, and the new approximation error differs from the old
one by a constant factor which depends only on the knots. Specifically, we prove

Theorem 2. Supposef ∈ �2[a,b], k�2, andx−1 := a =: x0 < x1 < · · · < xn := b =:
xn+1. Then for each piecewise polynomials ∈ �2[a,b] of degree�k − 1 with knotsxi ,

i = 1, . . . , n− 1, there is a piecewise polynomials1 ∈ �2[a,b] of degree�k − 1,with the
same knots such that

(1) f (xi) = s1(xi), i = 0, . . . , n,
(2) ‖f − s1‖[xi−1,xi ] �c(m) ‖f − s‖[xi−2,xi+1] , i = 1, . . . , n,

wherec(m) is a constant depending only on m,the scale of the partitionx0, . . . , xn, i.e.,

m := max
1� i�n−1

{
xi+1 − xi

xi − xi−1
; xi − xi−1

xi+1 − xi

}
. (4)

Remark 1. The proof implies thatc(m)�4(2m + 1). In particular, since for equidistant
knotsm = 1, and for the Chebyshev knotsm�3, in both casesc(m) is an absolute constant.

Remark 2. One can show that, in general, it is impossible to replacec(m) by an absolute
constant. Indeed, forn = 2, k = 3, we havec(m)� 1

9m.

The following is an immediate consequence of Theorems 1 and 2.

Theorem 3. Let F ∈ �3[a,b] and f (x) := F ′(x), x ∈ (a, b). Given an integerk�2, a
partition x−1 := a =: x0 < x1 < · · · < xn := b =: xn+1, and a piecewise polynomial
s ∈ �2[a,b] of degree�k − 1, with knotsxi , i = 1, . . . , n− 1, there exists a piecewise

polynomialS ∈ �3[a,b] of degree�k with knotsxi , i = 1, . . . , n− 1, for which

‖F − S‖�c(m) max
1� i�n

(xi − xi−1) ‖f − s‖[xi−2,xi+1] , (5)

where m is the scale of partition(4),andc(m)�cm for some absolute constant c.

Note that (5) is completely trivial iff is unbounded in(a, b). If f is bounded there, then
f (a+), f (b−) < ∞, we put f (a):= f (a+) andf (b) := f (b−), and the conditions of
Theorem2 are satisfied.

In order to apply Theorem3 to obtain Jackson-type inequalities for 3-monotone approx-
imation by piecewise polynomials with equidistant knots, we summarize results by Hu[5],
Kopotun[8], Leviatan and Shevchuk[9, Corollary 2.4], Shevchuk[11, p. 141]; Shvedov
[13] for convex approximation by piecewise polynomials. Namely,

Proposition. Let k�1 andr�0, be integers such that eitherr�2 or 2�k + r�3.Then
for eachf ∈ C(r)[−1,1] ∩ �2[−1,1] there exist piecewise polynomialss1, s2 ∈ �2[−1,1] of degree
�k + r − 1 such thats1 has n equidistant knots,and satisfies

‖f − s1‖[−1,1] �
c(k, r)

nr
�k(f

(r), 1/n; [−1,1]), (6)
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ands2 has knots on the Chebyshev partition,and satisfies

‖f − s2‖[−1,1] �
c(k, r)

nr
��
k (f

(r), 1/n; [−1,1]). (7)

Moreover,s1 ands2 interpolate f at the respective knots.
If, on the other hand, 0�r�1 and k + r�4, then, in general, (6) and (7) cannot be

achieved.

This together with Theorem3 immediately implies all except one of the affirmative
statements of the following theorem.

Theorem 4. Letk�1andr�0,be integers such that eitherr�3or 3�k+ r�4, (k, r) �=
(4, 0). Then for eachF ∈ C

(r)
[−1,1] ∩ �3[−1,1] there exist piecewise polynomialsS1, S2 ∈

�3[−1,1] of degree�k + r − 1, such thatS1 has n equidistant knots,and satisfies

‖F − S1‖[−1,1] �
c(k, r)

nr
�k(F

(r), 1/n; [−1,1]), (8)

andS2 has knots on the Chebyshev partition,and satisfies

‖F − S2‖[−1,1] �
c(k, r)

nr
��
k (F

(r), 1/n; [−1,1]), (9)

If r�2 andk + r�5, then(8) and(9) in general cannot be achieved.

The only positive case claimed above which cannot be concluded from Theorem3 is
(k, r) = (3,0), which is (1). The negative results follow from Shevchuk[11, Theorem
16.1], who extended the original negative result of Shvedov[13].

Remark 3. Note that we have left out one case. Namely, it is unknown to us whether it is
possible to construct for an arbitrary 3-convex functionF, a cubic piecewise polynomial
S ∈ �3[−1,1] with n equidistant knots such that

‖F − S‖[−1,1] �c�4(F, 1/n; [−1,1]).

A 3-monotone function in[a, b], necessarily possesses at least one continuous derivative
in (a, b), and indeed all we can say about the piecewise polynomials we constructed in
Theorems 1 and 3 is that they possess this minimal possible smoothness, namely, they are
in C(1)[a,b]. However, this can be improved and it is possible to obtain smoother piecewise
polynomials. We prove

Theorem 5. SupposeS ∈ �3[a,b] is a piecewise polynomial of degree�k, k�3,with knots
on the partitionx−1 := a =: x0 < x1 < · · · < xn := b =: xn+1. Then there is a piecewise
polynomialS1 of degree�k with the same knots,such that

S1 ∈ �3[a,b] ∩ C(2)[a,b],
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and

‖S − S1‖�c(k,m,�) max
1� j�n−1

�k+1(S, (xj+1 − xj−1); [xj−1, xj+1]), (10)

wherec(k,m,�) depends only on k,m,�, where m is given by(4) and

� = max
0� i<j�n

(j − i)(xi+1 − xi)

xj − xi
. (11)

Remark 4. For equidistant knotsm = 1 and� = 1, and for the Chebyshev knotsm�3
and���. Thus, for these partitionsc(k,m,�)�c∗(k), depending only onk.

In view of this remark a standard proof combining Theorems 4 and 5 yields

Theorem 6. Let k�1 andr�0, be integers such that eitherr�3 or k + r = 4, (k, r) �=
(4, 0). Then for eachF ∈ C

(r)
[−1,1] ∩ �3[−1,1] there exist piecewise polynomialsS1, S2 ∈

�3[−1,1] ∩ C(2)[a,b] of degree�k + r − 1, such thatS1 has n equidistant knots,and satisfies

‖F − S1‖[−1,1] �
c(k, r)

nr
�k(F

(r), 1/n; [−1,1]), (12)

andS2 has knots on the Chebyshev partition,and satisfies

‖F − S2‖[−1,1] �
c(k, r)

nr
��
k (F

(r), 1/n; [−1,1]). (13)

If r�2 andk + r�5, then(12)and(13) in general cannot be achieved.

3. Auxiliary construction and the proof of Theorem 1

Given a real functionf defined on[a, b], let L(·; f ; a, b) denote the linear Lagrange
interpolation off at the pointsa andb. Throughout this section we takek�2.
We begin with

Lemma 1. Letf ∈ �2[a,b], and suppose thatq ∈ �2[a,b] is a polynomial of degree�k − 1,

satisfyingf (a) = q(a) andf (b) = q(b). Then there exists a polynomialp ∈ �2[a,b] of
degree�k − 1, such that

f (a) = p(a), f (b) = p(b), (14)

q ′(a)�p′(a), p′(b)�q ′(b), (15)
∥∥∥∥∥
∫ (·)

a

(p(t)− f (t)) dt

∥∥∥∥∥[a,b]
�2

∥∥∥∥∥
∫ (·)

a

(q(t)− f (t)) dt

∥∥∥∥∥[a,b]
(16)
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and ∫ b

a

p(t) dt�
∫ b

a

f (t) dt. (17)

Proof. If∫ b

a

q(t) dt�
∫ b

a

f (t) dt,

then we takep := q and (14)–(17) are self-evident. Otherwise,
∫ b

a

f (t) dt −
∫ b

a

q(t) dt =: A > 0.

Clearly,

A�
∥∥∥∥∥
∫ (·)

a

(q(t)− f (t)) dt

∥∥∥∥∥[a,b]
. (18)

Let l(·) := L(·; f ; a, b). Then by the convexity off, l(x)�f (x), x ∈ [a, b]. Hence,
∫ x

a

l(t) dt −
∫ x

a

f (t) dt�
∫ b

a

l(t) dt −
∫ b

a

f (t) dt =: B�0, x ∈ [a, b]. (19)

Let

p(x) := Al(x)+ Bq(x)

A+ B
, x ∈ [a, b].

Thenp is a convex combination ofl andq, and (14) and (15) are readily seen (note that for
(15) we use the fact thatq ′ is non-decreasing). Forx ∈ [a, b] we obtain by virtue of (19)
and (18),∣∣∣∣

∫ x

a

p(t) dt −
∫ x

a

f (t) dt

∣∣∣∣
=

∣∣∣∣ A

A+ B

∫ x

a

(l(t)− f (t)) dt + B

A+ B

∫ x

a

(q(t)− f (t)) dt

∣∣∣∣
� A

A+ B

∣∣∣∣
∫ x

a

(l(t)− f (t)) dt

∣∣∣∣ + B

A+ B

∣∣∣∣
∫ x

a

(q(t)− f (t)) dt

∣∣∣∣
� A

A+ B
B + B

A+ B

∥∥∥∥∥
∫ (·)

a

(q(t)− f (t)) dt

∥∥∥∥∥[a,b]

� 2B

A+ B

∥∥∥∥∥
∫ (·)

a

(q(t)− f (t)) dt

∥∥∥∥∥[a,b]

� 2

∥∥∥∥∥
∫ (·)

a

(q(t)− f (t)) dt

∥∥∥∥∥[a,b]
,
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that is, (16). Finally,∫ b

a

p(t) dt = A

A+ B

∫ b

a

l(t) dt + B

A+ B

∫ b

a

q(t) dt

= A

A+ B

(
−B +

∫ b

a

l(t) dt

)
+ B

A+ B

(∫ b

a

q(t) dt + A

)

=
∫ b

a

f (t) dt,

and (17) holds. This completes the proof.�

Next we show

Lemma 2. Letq ∈ �2[a,b] be a polynomial of degree�k − 1,and let� and� be arbitrary
non-negative real numbers. Suppose thatda , db are real numbers satisfying,

da� (q(b)− �)− (q(a)− �)
b − a

�db (20)

and

da�q ′(a)�q ′(b)�db.

Then there exists a polynomialp ∈ �2[a,b] of degree�k − 1, such that

p(a) = q(a)− �, p(b) = q(b)− �, (21)

da�p′(a)�p′(b)�db (22)

and

p(x)�q(x), x ∈ [a, b]. (23)

Proof. If � = �, then we takep(x) := q(x) − � , a�x�b, and (21)–(23) are obvious.
Otherwise, assume that� > � (the other case being similar). Let

	 := (b − a)db + q(a)− q(b)

� − �
,

and note that the right-hand side of (20) is equivalent to the inequality	�1. Putl(x) :=
db(x − b)+ q(b)− 	�, x ∈ [a, b]. Then,

l(x)�db(x − b)+ q(b)�q(x), x ∈ [a, b]. (24)

Now let

p(x) := 	−1((	 − 1)q(x)+ l(x)), x ∈ [a, b].
Then the polynomialp is convex being a linear combination ofl andq, with non-negative
coefficients, and straightforward calculations yield (21) and (22) (again note that for (22)
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we use the fact thatq ′ is non-decreasing). Finally by (24),

p(x)�	−1((	 − 1)q(x)+ q(x)) = q(x), x ∈ [a, b],
thus we have established (23). This completes the proof.�

Now we establish some relations between two convex functions in an interval. First

Lemma 3. Letf ∈ �2[z1,z2] andg ∈ �2[z1,z2]∩C(1)[z1,z2],be such thatf (zi) = g(zi), i = 1,2.
Let li (x) := (x − zi)g

′(zi)+ g(zi), i = 1,2,and denote

�i :=
∫ z2

z1

(li(t)− f (t))+dt, i = 1,2.

Then

�i�
∥∥∥∥∥
∫ (·)

zi

(f (t)− g(t)) dt

∥∥∥∥∥[z1,z2]
, i = 1,2. (25)

Proof. We begin withi = 1. Sinceg is convex, it follows thatl1(x)�g(x), x ∈ [z1, z2].
Sincef is convex andl1 is linear, there exists a
 ∈ [z1, z2], such thatf (x)� l1(x), x ∈
[z1, 
], andl1(x)�f (x), x ∈ [
, z2]. Hence,

�1 =
∫ 


z1

(l1(t)− f (t)) dt�
∫ 


z1

(g(t)− f (t)) dt

�
∥∥∥∥∥
∫ (·)

z1

(f (t)− g(t)) dt

∥∥∥∥∥[z1,z2]
,

and (25) is proved fori = 1. This in turn yields

�2�
∥∥∥∥
∫ z2

(·)
(f (t)− g(t)) dt

∥∥∥∥
[z1,z2]

,

and the proof of (25) fori = 2 is complete. �

We also have

Lemma 4. Letf, g ∈ �2[a,b], be such that

f (b)− f (a) = g(b)− g(a). (26)

Then

f ′(a+)�g′(b−).
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Proof. The functionsf ′ andg′ are non-decreasing on(a, b). Suppose to the contrary that
f ′(a+) > g′(b−). Then

f (b)− f (a)=
∫ b

a

f ′(x) dx�f ′(a+)(b − a)

> g′(b−)(b − a)�
∫ b

a

g′(x) dx

= g(b)− g(a),

contradicting (26). �

An immediate consequence in the context of our paper is

Corollary 1. Let f ∈ �2[a,b] and let s ∈ �2[a,b] be a piecewise polynomial of degree
�k− 1,with knots on the partitiona =: x0 < x1 < · · · < xn := b satisfying(2).Then for
i = 2, . . . , n− 1,

f ′(xi−1+)�s′(xi−), i = 2, . . . , n− 1 (27)

and

s′(xi−1+)�f ′(xi−), i = 2, . . . , n− 1. (28)

We are ready to begin our auxiliary construction. Givenf ∈ �2[a,b] ands ∈ �2[a,b] as
above, denote

M := max
1� i�n

‖s − f ‖L1[xi−1,xi ] . (29)

For a functiong, we writeg ∈ Ai,j , 1� i < j�n−1, if g is a convex piecewise polynomial
of degree�k − 1, on[xi, xj ], with knotsxi+1, . . . , xj−1, and satisfiess′(xi+)�g′(xi+)
andg′(xj−)�s′(xj−), andg(xi) = s(xi) andg(xj ) = s(xj ). For eachr = 1, . . . , n− 1
let

hr(t) :=




f ′(xi−) if t ∈ (xi−1, xi], i = 1, . . . , r − 1,
s′(xr−) if t ∈ (xr−1, xr ],
s′(xr+) if t ∈ (xr , xr+1),

f ′(xi−1+) if t ∈ [xi−1, xi), i = r + 2, . . . , n,

and set

gr(x) := f (xr)+
∫ x

xr

hr (t) dt.

By virtue of Corollary 1,hr is non-decreasing on(a, b), andgr is convex there. It follows
by (2) thatgr(xr+1)�f (xr+1) andgr(xr−1)�f (xr−1). Hence,

gr(x)�f (x), x ∈ [a, b] \ (xr−1, xr+1). (30)

By Lemma3,∫ xr+1

xr

(gr (t)− f (t))+ dt�M (31)
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and ∫ xr

xr−1

(gr(t)− f (t))+ dt�M. (32)

For each pair 1� i < j�n − 1, we will construct a functiongi,j ∈ Ai,j . To this end, if
j = i + 1, then we setgi,i+1 := s∣∣[xi ,xi+1], evidently belonging toAi,i+1. Otherwise, we

observe that by (30), wehavegj (xi)�gi(xi)andgi(xj )�gj (xj ).Alsogj−gi is continuous
on [xi, xj ], therefore there exists a
 ∈ (xi, xj ) such thatgi(
) = gj (
). In addition, by
(27) and (28)hi(t)�hj (t), t ∈ (xi, xj ), whencehj − hi is non-negative on(xi, xj ), and
in turngj − gi is non-decreasing there. Hence

max{gi(x), gj (x)} =
{
gi(x) if x�
,
gj (x) if x > 
,

and we setgi,j (x) := max{gi(x), gj (x)}, x ∈ [xi, xj ]. Note thatgi,j is convex in[xi, xj ]
as themaximum of convex functions. For some integerm,i+1�m�j , the point
 satisfies

 ∈ [xm−1, xm]. Clearly, for each integerl, l �= m, i + 1� l�j , the functiongi,j is linear
on [xl−1, xl], but it may not be so on the interval[xm−1, xm]. We wish to replace it on the
latter with a suitable polynomial of degree�k − 1. Sincegi,j is convex, we have

g ′
i,j (xm−1+)�

gi,j (xm)− gi,j (xm−1)

xm − xm−1
�g ′

i,j (xm−).

Put

da :=
{
s′(xm−1+) if m− 1 = i,

f ′(xm−2+) otherwise
and db :=

{
s′(xm−) if m = j,

f ′(xm+1−) otherwise.

Then it follows that

da�g ′
i,j (xm−1+)�g ′

i,j (xm−)�db.
Also, in view of (27) and (28),

da�s′(xm−1+), s′(xm−)�db.
Applying Lemma2with a := xm−1 andb := xm, da anddb as above,q := s|[xm−1,xm], and
� := f (xm−1)− gi,j (xm−1) and� := f (xm)− gi,j (xm), we obtain a suitable polynomial
p. Put

gi,j (x) :=
{
gi,j (x) if x /∈ [xm−1, xm],
p(x) if x ∈ [xm−1, xm].

Then (21) and (22) yieldgi,j ∈ Ai,j and (23) gives

∫ xm

xm−1

(gi,j (t)− f (t))+ dt�
∫ xm

xm−1

(s(t)− f (t))+ dt�M. (33)
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By virtue (31) and (32) we have∫ xi+1

xi

(gi,j (t)− f (t))+ dt�M (34)

and ∫ xj

xj−1

(gi,j (t)− f (t))+ dt�M. (35)

Since (30) implies thatgi,j (x)�f (x) for all x ∈ [xl−1, xl], i + 1 < l < j , l �= m, we
conclude from (33)–(35) that∫ xj

xi

(gi,j (t)− f (t))+ dt�3M. (36)

If �(·) is a continuous function on[xi, xj ], then we have∥∥∥∥∥
∫ (·)

xi

�(t) dt

∥∥∥∥∥[xi ,xj ]
�

∣∣∣∣
∫ xj

xi

�(t) dt

∣∣∣∣ +
∫ xj

xi

�(t)+ dt. (37)

Indeed, forxi < x < xj , if
∫ x
xi

�(t) dt�0, then

0�
∫ x

xi

�(t) dt�
∫ x

xi

�+(t) dt�
∫ xj

xi

�+(t) dt.

On the other hand, if
∫ x
xi

�(t) dt < 0, then∣∣∣∣
∫ x

xi

�(t) dt

∣∣∣∣ �
∫ x

xi

�−(t) dt�
∫ xj

xi

�−(t) dt

= −
∫ xj

xi

�(t) dt +
∫ xj

xi

�(t)+ dt.

Thus, (37) is proved. Therefore, if we denote

�i,j (·) :=
∫ (·)

xi

(gi,j (t)− f (t)) dt,

then by (36),∥∥�i,j
∥∥[xi ,xj ] �

∣∣�i,j (xj )∣∣ + 3M. (38)

The next lemma establishes the existence of functions inAi,j with associated�i,j ’s with
desired properties.

Lemma 5. Let1� i�n−2be a fixed integer. Then,there exist an integeri+1�j�n−1,
and a functiong$i,j ∈ Ai,j , such that for

�$i,j (·) :=
∫ (·)

xi

(g$i,j (t)− f (t)) dt,
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we have∥∥∥�$i,j
∥∥∥[xi ,xj ]

�12M. (39)

If j < n− 1, then,in addition,

�$i,j (xj ) < 0. (40)

Proof. If �i,n−1(xn−1)�0, then by (36),�i,n−1(xn−1)�3M, and settingg$i,n−1 := gi,n−1,
we see that (39) follows by (38). Otherwise, at least one of the above numbers�i,i+r (xi+r ),
1�r�n− i − 1, is negative. If for some 1�r�n− i − 1,−6M��i,i+r (xi+r ) < 0, then
we takej := i+ r andg$i,j := gi,j . Then (40) is fulfilled, and again by (38), we obtain (39).
Finally, if all negative numbers among the above are< −6M, then we let 1�r�n− i−1,
be the smallest such that�i,i+r (xi+r ) < −6M. Evidently,r�2, sincegi,i+1(x) = s(x),
x ∈ [xi, xi+1], whence|�i,i+1(xi+1)|�M. Setj := i + r, and letp := s∣∣[xj−1,xj ]. Then
by (29),

∥∥∥∥∥
∫ (·)

xj−1

(p(t)− f (t)) dt

∥∥∥∥∥[xj−1,xj ]
�M. (41)

Denote

g̃i,j (x) :=
{
gi,j−1(x) if x ∈ [xi, xj−1),

p(x) if x ∈ [xj−1, xj ].
Theng̃i,j ∈ Ai,j−1 andg̃i,j ∈ Aj−1,j , imply thatg̃i,j ∈ Ai,j . Letg$i,j (x) := 	gi,j (x)+(1−
	)g̃i,j (x), x ∈ [xi, xj ],where	 := 6M|�i,j (xj )|−1. Clearly,	 ∈ (0, 1), so thatg$i,j ∈ Ai,j .
The choice ofr implies that 0��i,j−1(xj−1)�3M. Hence by (38)∥∥∥∥∥

∫ (·)

xi

(g̃i,j (t)− f (t)) dt

∥∥∥∥∥[xi ,xj−1]
= ∥∥�i,j−1

∥∥[xi ,xj−1]

� |�i,j−1(xj−1)| + 3M

� 6M.

Also, by (41)∣∣∣∣
∫ x

xi

(g̃i,j (t)− f (t)) dt

∣∣∣∣ =
∣∣∣∣∣�i,j−1(xj−1)+

∫ x

xj−1

(p(t)− f (t)) dt

∣∣∣∣∣
� |�i,j−1(xj−1)| +M

� 4M, x ∈ [xj−1, xj ].
Therefore,∥∥∥∥∥

∫ (·)

xi

(g̃i,j (t)− f (t)) dt

∥∥∥∥∥[xi ,xj ]
�6M. (42)
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In particular,

�$i,j (xj ) = 	�i,j (xj )+ (1− 	)
∫ xj

xi

(g̃i,j (t)− f (t)) dt

� −6M + (1− 	)6M < 0,

so that (40) is verified. Finally, by virtue of (38) and (42),

∥∥∥�$i,j
∥∥∥[xi ,xj ]

� 	
∥∥�i,j

∥∥[xi ,xj ] + (1− 	)

∥∥∥∥∥
∫ (·)

xi

(g̃i,j (t)− f (t)) dt

∥∥∥∥∥[xi ,xj ]
� 	(|�i,j (xj )| + 3M)+ 6(1− 	)M = 6M + 6M − 3	M
� 12M.

This proves (39) and completes the proof of Lemma5. �

Proof of Theorem 1. We look for the required functionS in the form

S(x) := F(x1)+
∫ x

x1

g(t) dt, x ∈ [a, b],

where

g(t) =
{
s(t) if t ∈ [x0, x1) ∪ (xn−1, xn],
g(t) if t ∈ [x1, xn−1]

is inA1,n−1. The latter provides the 3-monotonicity ofS. We are going to constructg(t) by
induction.
First we observe that when we apply Lemma1 for [xi−1, xi], 2� i�n − 1, with q :=

s∣∣[xi−1,xi ], then the resulting polynomialp is inAi−1,i. Also, recall that ifg ∈ Ai,j , 1� i <
j < l�n−1, andg ∈ Aj,l , theng ∈ Ai,l .We constructgby induction.We apply Lemma1
for [x1, x2], with q := s∣∣[x1,x2], obtain a polynomialp ∈ A1,2, and putg(x) := p(x),

x ∈ [x1, x2]. Suppose thatg is already defined on[x1, xi] for some 2� i�n − 2, it is in
A1,i, and satisfies for allx ∈ [x1, xi],∣∣∣∣

∫ x

x1

(g(t)− f (t)) dt

∣∣∣∣ �24M, (43)

whereM is given in (29), and
∣∣∣∣
∫ xi

x1

(g(t)− f (t)) dt

∣∣∣∣ �12M. (44)

Then we defineg on some[xi, xj ], i < j�n− 1, so thatg ∈ Ai,j , (43) remains valid, on
the larger interval[x1, xj ], and ifj < n− 1, then also such that

∣∣∣∣
∫ xj

x1

(g(t)− f (t)) dt

∣∣∣∣ �12M. (45)
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If ∫ xi

x1

(g(t)− f (t)) dt�0, (46)

then we takej = i + 1 and apply Lemma1 for [xj−1, xj ], andq := s∣∣[xj−1,xj ]. We put

g(x) := p(x), x ∈ [xj−1, xj ], wherep is the resulting polynomial. Forx ∈ [xj−1, xj ], we
have by (44) and (16),∣∣∣∣

∫ x

x1

(g(t)− f (t)) dt

∣∣∣∣ �
∣∣∣∣
∫ xi

x1

(g(t)− f (t)) dt

∣∣∣∣ +
∣∣∣∣
∫ x

xi

(p(t)− f (t)) dt

∣∣∣∣
� 12M + 2M�14M.

Hence, combining with (43) forx ∈ [x1, xi], we see that (43) holds forx ∈ [x1, xj ].
Moreover, (17) implies that

0�
∫ xj

xj−1

(g(t)− f (t)) dt�2M.

which together with (44) and (46) yield

−12M�
∫ xj

x1

(g(t)− f (t)) dt�2M.

This proves (45). Note that here is the only place we make use of (17).
Otherwise,∫ xi

x1

(g(t)− f (t)) dt > 0. (47)

We apply Lemma5, and get some integerj, i + 1�j�n − 1, andg$i,j ∈ Ai,j , satisfying
(39), and (40) if j < n− 1. We putg(x) := g$i,j (x), x ∈ [xi, xj ]. If j = n − 1, then
(39) implies (43) forx ∈ [x1, xn−1], and the construction is complete. Otherwise, for
x ∈ [xi, xj ], by (39) and (44),∣∣∣∣

∫ x

x1

(g(t)− f (t)) dt

∣∣∣∣ �
∣∣∣∣
∫ xi

x1

(g(t)− f (t)) dt

∣∣∣∣ +
∣∣∣∣
∫ x

xi

(g$i,j (t)− f (t)) dt

∣∣∣∣
� 12M + 12M�24M.

Hence, (43) holds forx ∈ [x1, xj ]. Also, by (47) and (44),

0<
∫ xi

x1

(g(t)− f (t)) dt�12M,

which combined with (39) and (40) give

−12M <

∫ xj

x1

(g(t)− f (t)) dt�12M.

This proves (45) and completes the induction step.
Finally, in view of the definition ofS, we see by (43), that (3) holds withc�25. �
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4. Proof of Theorem 2

Recall that forf defined on[a, b], we let l(·) := L(·; f ; a, b) denote the linear Lagrange
interpolation off at the pointsa andb. (Note thatl′(x) = f [a, b], x ∈ [a, b].) We begin
with some lemmas.

Lemma 6. Let f ∈ �2[a,b] and s ∈ �2[a,b], are such that eithers′(b−)�f [a, b] or
s′(a+)�f [a, b], then

‖f − l‖�2‖f − s‖.

Proof. Assume thats′(b−)�f [a, b], the cases′(a+)�f [a, b] is symmetric. Ifx0 :=
sup{x∈ (a, b) : f ′(x)�f [a, b]}, thens′(x)�s′(b−)�f [a, b]�f ′(x),x0�x�b.Hence,

‖f − l‖ = l(x0)− f (x0)

=
∫ b

x0

(f ′(x)− l′(x)) dx

�
∫ b

x0

(f ′(x)− s′(x)) dx

� f (b)− s(b)− (f (x0)− s(x0))

� 2‖f − s‖. �

The next lemma is essential to our proof.

Lemma 7. Suppose that f is defined on[a1, b1], and that s is a piecewise polynomial of
degree�k − 1,with knots a and b,a1�a < b�b1, such thats′(a+)�f [a, b]�s′(b−).
If f, s ∈ �2[a1,b1], then there exists a piecewise polynomials1 ∈ �2[a1,b1], of degree�k − 1,
with knots a and b,satisfying

(1) s′(a+)�s′1(a+), s′1(b−)�s′(b−),
(2) s1(a) = f (a), s1(b) = f (b),
(3) ‖f − s1‖[a,b] �4‖f − s‖[a,b],
(4) ‖f − s1‖[a1,b1] �4‖f − s‖[a1,b1].

Note that if[a, b] = [a1, b1], then boths ands1 are polynomials of degree�k − 1 on
[a1, b1].

Proof. If f (b)− f (a) = s(b)− s(a), we takes1(x) := s(x)+ f (a)− s(a), x ∈ [a1, b1].
Then (1) and (2), are self-evident, and

‖f − s1‖[a,b] �‖f − s‖[a,b] + |f (a)− s(a)|�2‖f − s‖[a,b]

and

‖f − s1‖[a1,b1] �‖f − s‖[a1,b1] + |f (a)− s(a)|�2‖f − s‖[a1,b1].
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Assumef (b) − f (a) < s(b) − s(a), the casef (b) − f (a) > s(b) − s(a) is symmetric.
We first defines1 in [a, b], and then we extend it to[a1, b1] if [a, b] �= [a1, b1].

Let s̃(x) := s(x) − s′(a+)(x − a), x ∈ [a, b], andf̃ (x) := f (x) − s′(a+)(x − a),
x ∈ [a, b]. Then‖f̃ − s̃‖[a,b] = ‖f − s‖[a,b], s̃′(a+) = 0, s̃′(b−) = s′(b−) − s′(a+),
and f̃ [a, b] = f [a, b] − s′(a+)�0. In particularf̃ (b) − f̃ (a)�0, and since by our
assumptionf̃ (b)− f̃ (a) < s̃(b)− s̃(a), it follows thats̃(b)− s̃(a) > 0. Thus we may set
s̃1(x) := f̃ (a) + 	(s̃(x) − s̃(a)), x ∈ [a, b], where	 := (f̃ (b) − f̃ (a))(s̃(b) − s̃(a))−1.
Then 0�	 < 1 ands̃1 is convex in[a, b]. Also s̃1(a) = f̃ (a), s̃1(b) = f̃ (b), s̃′1(a+) = 0,
and s̃′1(b−) = 	s̃′(b−) < s′(b−) − s′(a+). We sets1(x) := s̃1(x) + s′(a+)(x − a),
x ∈ [a, b], and it has properties (1) and (2). Finally, note thats̃′ �0 in [a, b] so thats̃ is
non-decreasing there, and‖s̃(·)− s̃(a)‖[a,b] = s̃(b)− s̃(a). Hence

‖f − s1‖[a,b] =
∥∥∥f̃ − s̃1

∥∥∥[a,b]
=

∥∥∥f̃ (·)− s̃(·)+ s̃(a)− f̃ (a)+ s̃(·)− s̃(a)+ f̃ (a)− s̃1(·)
∥∥∥[a,b]

� 2
∥∥∥f̃ − s̃

∥∥∥[a,b] + ∥∥s̃(·)− s̃(a)− 	(s̃(·)− s̃(a))
∥∥[a,b]

� 2
∥∥∥f̃ − s̃

∥∥∥[a,b] + (1− 	)|s̃(b)− s̃(a)|
= 2

∥∥∥f̃ − s̃

∥∥∥[a,b] + |s̃(b)− s̃(a)− (f̃ (b)− f̃ (a))|
� 4

∥∥∥f̃ − s̃

∥∥∥[a,b] = 4‖f − s‖[a,b] ,

and (3) is done.
Further, if[a, b] �= [a1, b1], then we extends1 either to the left or to the right or both, as

needed, by setting

s1(x) =
{
s(x)+ f (a)− s(a), x ∈ [a1, a),
s(x)+ f (b)− s(b), x ∈ (b, b1].

Then it is easy to see thats1 is a convex piecewise polynomial of degree�k−1 on [a1, b1],
with knotsaandb, which possesses properties (1)–(3).Weonly have to estimate the distance
betweenf ands1 on the intervals[a1, a] and[b, b1]. Now

‖f − s1‖[b,b1] �‖f − s‖[b,b1] + |f (b)− s(b)|�2‖f − s‖[b,b1],

and similarly

‖f − s1‖[a1,a] �2‖f − s‖[a1,a].

Combining these with (3), we establish (4), and the proof is complete.�

Next is a lemma which is needed in the proof of Lemma9.

Lemma 8. Supposef ∈ �2[a,b1], ands ∈ �2[a,b1], a < b < b1, ands′(b−)− f [b, b1] > 0.
Then

(s′(b−)− f [b, b1])(b1 − b)�2‖f − s‖[b,b1] .
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Symmetrically,if f ∈ �2[a1,b], and s ∈ �2[a1,b], a1 < a < b, andf [a1, a] − s′(a+) > 0,
then

(f [a1, a] − s′(a+))(a − a1)�2‖f − s‖[a1,a] .

Proof. We prove the first statement, the proof of the other is similar. Letx1 := sup{x ∈
(b, b1) : f ′(x)�s′(b−)}. Then

(s′(b−)− f [b, b1])(b1 − b) =
∫ b1

b

(s′(b−)− f [b, b1]) dx

=
∫ b1

b

(s′(b−)− f ′(x)) dx

�
∫ x1

b

(s′(b−)− f ′(x)) dx

�
∫ x1

b

(s′(x)− f ′(x)) dx

= s(x1)− f (x1)− (s(b)− f (b))

� 2‖s − f ‖[b,b1] ,

where in the second inequality we used the fact thats′ is non-decreasing so thatf ′(x)�
s′(b−)�s′(x), x ∈ (b, x1). �

The following lemma plays a crucial role in the proof.

Lemma 9. Leta1 < a < b < b1,m := max
{
b−a
b1−b ; b−a

a−a1
}
, andf ∈ �2[a1,b1], and suppose

that s ∈ �2[a1,b1] is a piecewise polynomial of degree�k− 1with knots a and b,satisfying

f (a) = s(a), f (b) = s(b). Then,there is a polynomials1 ∈ �2[a,b] of degree�k − 1 such
that

(1) s′(a+)�s′1(a+), s′1(b−)�s′(b−),
(2) f [a, a1] =: ka�s′1(a+), s′1(b−)�kb := f [b, b1],
(3) s1(a) = f (a), s1(b) = f (b),

(4) ‖f − s1‖[a,b] �c(m) ‖f − s‖[a1,b1],

wherec(m)�2m+ 1.

Proof. Subtracting a linear function if necessary, we may assume thatf (a) = f (b). If s
is constant on[a, b], takes1(x) := s(x), x ∈ [a, b]. Otherwise, sinces(b) = s(a) ands is
convex, we have s′(b−) > 0> s′(a+). Denote

	 := min

{
kb

s′(b−) ,
ka

s′(a+)
}

�0.

If 	�1, then takes1(x) := s(x), x ∈ [a, b], and there is nothing to prove. Otherwise
	 < 1, and without loss of generality we may assume that	 = kb

s′(b−) < 1. Then let

s1(x) := s(a) + 	(s(x) − s(a)), x ∈ [a, b], so thats1 ∈ �2[a,b] and it is a polynomial of
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degree�k−1. It is readily seen thats1(a) = f (a) = f (b) = s1(b).Also, sinces′(a+) < 0
and ka

s′(a+) �
kb

s′(b−) > 0, we have

s′1(a+) = 	s′(a+) = kb

s′(b−) s
′(a+)� ka

s′(a+) s
′(a+) = ka

and

s′1(b−) = 	s′(b−) = kb

s′(b−) s
′(b−) = kb.

Let x0 := sup{x∈ (a, b) : s′(x)�0}. Since 0= s(b)− s(a) = ∫ b
a
s′(t) dt , we have

‖s − s(a)‖[a,b] =
∫ a

x0

s′(t) dt =
∫ b

x0

s′(t) dt�(b − x0)s
′(b−)�(b − a)s′(b−).

This in turn implies by virtue of Lemma8,

‖s − s1‖[a,b] = max
x∈[a,b] |s(x)− s(a)− 	(s(x)− s(a))|

= (1− 	) ‖s − s(a)‖[a,b] �(1− 	)(b − a)s′(b−)
= s′(b−)− kb

s′(b−) (b − a)s′(b−)�(s′(b−)− kb)(b − a)

� m(s′(b−)− kb)(b1 − b)�2m ‖f − s‖[b,b1] .

Hence,

‖f − s1‖[a,b] � ‖f − s‖[a,b] + ‖s − s1‖[a,b]
� (2m+ 1)‖f − s‖[a1,b1] ,

and Lemma9 is proved withc(m) = 2m+ 1. �

Finally, we need a one-sided (weaker) version of Lemma9. This version is required when
f may not be extended to the left ofa as a convex function, i.e., whenf ′(a+) = −∞.

Lemma 10. Let a < b < b1, m̃ := b−a
b1−b , andf ∈ �2[a,b1], and suppose thats ∈ �2[a,b1]

is a piecewise polynomial of degree�k − 1 with knot b,satisfyingf (a) = s(a) and
f (b) = s(b). Then,there is a polynomials1 ∈ �2[a,b] of degree�k − 1 such that

(1) s′1(b−)�s′(b−),
(2) s′1(b−)�kb := f [b, b1],
(3) s1(a) = f (a), s1(b) = f (b),

(4) ‖f − s1‖[a,b] �c(m̃) ‖f − s‖[a,b1],

wherec(m̃)�2m̃+ 1.
Symmetrically,let a1 < a < b, m̃ := b−a

a−a1 , and f ∈ �2[a1,b], and suppose thats ∈
�2[a1,b] is a piecewise polynomial of degree�k−1with knot a,satisfyingf (a) = s(a) and
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f (b) = s(b). Then,there is a polynomials1 ∈ �2[a,b] of degree�k − 1 such that

(1) s′(a+)�s′1(a+),
(2) f [a, a1] =: ka�s′1(a+),
(3) s1(a) = f (a), s1(b) = f (b),

(4) ‖f − s1‖[a,b] �c(m̃) ‖f − s‖[a1,b],

wherec(m̃)�2m̃+ 1.

Proof. We indicate the proof for the first case, the second is completely analogous. We
repeat the proof of Lemma9, except that this time we simply take	 := kb

s′(b−) . Properties
(3) and (4) are the same and for (1) and (2), we deal only with the pointb. �

We are ready with the

Proof of Theorem 2. Denote

lr (·) := L(·; f ; xr−1, xr ), r = 0, . . . , n+ 1.

LetA ⊂ {1, . . . , n} be the set of all integersj, satisfyings′(xj−1+)� l′j �s′(xj−). For all
j /∈ A we sets1(x) := lj (x), x ∈ [xj−1, xj ]. By Lemma6

‖f − s1‖[xj−1,xj ] �2‖f − s‖[xj−1,xj ] . (48)

In order to defines1 on [xj−1, xj ], j ∈ A, we first assume 1< j < n and apply to the
interval [xj−2, xj+1], first Lemma7 and then Lemma9, with a = xj−1 andb = xj . We
conclude the existence ofs1 ∈ �2[xj−1,xj ], such that

‖f − s1‖[xj−1,xj ] �4(2m+ 1)‖f − s‖[xj−2,xj+1] , (49)

andf (xj−1) = s1(xj−1), f (xj ) = s1(xj ).
Finally, we have to deal with the possibility that eitherj = 1 or j = n is in A. To this

end, assume 1∈ A, the casen ∈ A being symmetric, so thats′(a+)�f [a, x1]�s′(x1−).
Then by Lemma7we have a convex piecewise polynomials̃1 in [a, x2] which interpolates
f ata andx1, satisfies̃s′1(x1−)�s′(x1−), and is such that

‖f − s̃1‖[a,x2] �4‖f − s‖[a,x2].

We now apply Lemma10and obtain a polynomials1 on [a, x1], of degree�k − 1, which
interpolatesf ata andx1, satisfiess′1(x1−)� s̃′1(x1−), and is such that

‖f − s1‖[a,x1] �4(2m+ 1)‖f − s‖[a,x2] . (50)

We are left with having to show that combining the various pieces we have ans1 ∈ �2[a,b].
To this end, all we should show is that

s′1(xj−)�s′1(xj+), j = 1, . . . , n− 1. (51)

Indeed, ifj, j+1 �∈ A, thens′1(xj−) = l′j ands′1(xj+) = l′j+1, and the inequalityl′j � l′j+1
is evident in view of the convexity off.
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If j, j + 1 ∈ A, then by virtue of Lemmas 7 and 9 or 10, and the convexity ofs we
conclude that

s′1(xj−)�s′(xj−)�s′(xj+)�s′1(xj+).
If j ∈ A, j + 1 �∈ A, then by Lemma 9 or 10,

s′1(xj−)� l′j = s′1(xj+),
and the casej �∈ A, j + 1 ∈ A, is symmetric. Thus (51) is proved.
In conclusion,s1 is a convex piecewise-polynomial function of degree�k−1, satisfying

s1(xj ) = f (xj ), j = 0, . . . , n, and (48)–(50) imply

‖f − s1‖[xi−1,xi ] �4(2m+ 1)‖f − s‖[xi−2,xi+1] , 1� i�n. �

5. Proof of Theorem 5

The following lemma is a modification of a lemma by Bondarenko[2, Lemma 3]for
arbitrary partitions, it can be proved in the same way, so we omit the proof.

Lemma 11. LetB�1 and� be given by(11).Then for every step function

g(x) =
n−1∑
i=1

�i (x − xi)
0+, x ∈ [a, b],

with �i�0, there exists a polygonal line

p(x) =
n−1∑
i=1

�i
(xi+1 − xi)

(x − xi)+,

satisfying

|�i | <
�i
B
, i = 1, . . . , n− 1, (52)

and such that

|g(x)− p(x)| < 8�BA, x ∈ [a, b], (53)

where

A := max
i=1,...,n−1

�i .

Lemma 12. Let x0 < x1 < · · · < xn be a given partition,�1, . . . , �n−1 a sequence of
non-negative numbers,satisfying

�i�(xi+1 − xi−1)
−2�, 1� i�n− 1,
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where� is some positive constant. Then there exists a cubic piecewise polynomial q with
the knotsx1, . . . , xn−1, such thatq ∈ C(1)[a,b],

q ′′(xi+)− q ′′(xi−) = −�i , i = 1, . . . , n− 1, (54)

q ∈ �3
(xi−1,xi )

, i = 1, . . . , n, (55)
‖q‖[a,b] �c(m,�)�, (56)

wherec(m,�) is a constant depending on m,the scale of the partition,given in(4) and�,
defined by(11)

Proof. For 1� i�n− 1, we construct an auxiliary functionqi(�, x), �, x ∈ R, as follows.
Put

�+
i := xi+1 − xi

xi+1 − xi−1
�i , �−

i := xi − xi−1

xi+1 − xi−1
�i ,

and�∗
i := min{�+

i , �
−
i }. Clearly�+

i (xi−xi−1) = �−
i (xi+1−xi), and�+

i +�−
i = �i . Define

gi(�, x) :=




0, x /∈ (xi−1, xi+1),
�+
i +�

xi−xi−1
(x − xi−1), x ∈ (xi−1, xi],

�−
i −�

xi+1−xi (x − xi+1), x ∈ (xi, xi+1),

and let

qi(�, x) :=
∫ x

x0

∫ t

x0

gi(�, 
) d
 dt.

It follows by straightforward calculations that

qi(�, x) =




0, x ∈ [a, xi−1],
�+
i +�

6(xi−xi−1)
(x − xi−1)

3, x ∈ (xi−1, xi],
�−
i −�

6(xi+1−xi ) (x − xi+1)
3 + wi(�)(x − xi)+ hi, x ∈ (xi, xi+1),

wi(�)(x − xi)+ hi, x ∈ [xi+1, b],
where

wi(�) = �
2
(xi+1 − xi−1)

and

hi = �+
i + �

6
(xi − xi−1)

2 + �−
i − �

6
(xi − xi+1)

2.

Clearly,qi(�, ·) ∈ C(1)[a,b], and

q ′′
i (�, xi+)− q ′′

i (�, xi−) = −�i , (57)
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moreover,xi is the only point of discontinuity of the second derivative ofqi(�, ·). Finally,
if |�|��∗

i , then

q
(3)
i (�, x)�0, x ∈ [a, b], (58)

thus we take|�|��∗
i .

Let

(x)+ =
{
x, x > 0,
0, x�0

and (x)0+ :=
{
1, x > 0,
0, x�0,

and denote

qi(�, x) =: ri(�, x)+ wi(�)(x − xi)+ + hi(x − xi)
0+, x ∈ [a, b].

Then

ri(�, x) = 0, x �∈ (xi−1, xi+1), (59)

and forx ∈ (xi−1, xi)

|ri(�, x)| =
∣∣∣∣∣

�+
i + �

6(xi − xi−1)
(x − xi−1)

3

∣∣∣∣∣ � �i
6
(xi − xi−1)

2

� 1

6

(
xi − xi−1

xi+1 − xi−1

)2

�

� �
6
.

The same inequality holds forx ∈ [xi, xi+1). Hence,

|ri(�, x)|� �
6
, x ∈ (xi−1, xi+1). (60)

Also

0�hi � �i
6
(xi − xi−1)

2 + �i
6
(xi − xi+1)

2

� 1

6
�i (xi+1 − xi−1)

2. (61)

PutB := 4m2

3 , wherem is the scale of the partitionx0, . . . , xn, see (4). We will show that
for �i , satisfying

|�i | <
1
6�i (xi+1 − xi−1)

2

B
, (62)

we may choose� in a way that guarantees

−wi(�) = �i
xi+1 − xi

,
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i.e.,

� = −2�i
(xi+1 − xi)(xi+1 − xi−1)

, (63)

and such that

|�|��∗
i . (64)

Indeed,

xi − xi−1

xi+1 − xi−1
� 1

2m
,

xi+1 − xi

xi+1 − xi−1
� 1

2m
,

so that

�∗
i �

�i
2m

.

Hence, (62) and (63) yield,

|�| � 2|�i |
(xi+1 − xi)(xi+1 − xi−1)

� 4m|�i |
(xi+1 − xi−1)2

� 4m�i (xi+1 − xi−1)
2

6B(xi+1 − xi−1)2
= �i

2m
��∗

i .

For our purposes we apply Lemma11 with �i := hi , i = 1, . . . , n− 1, andB := 4m2

3 .

Then by (52) and (61) we clearly have (62). Thus we take�̃i to satisfy

−wi(�̃i ) = �i
xi+1 − xi

,

so that in view of (64), we have

|�̃i |��∗
i .

Also, by (61) we see thatA� �
6 .

Define

q(x) :=
n−1∑
i=1

qi(�̃i , x), x ∈ [a, b].

Then clearlyq ∈ C(1)[a,b], (55) follows from (58), and (57) together with the observation that
xi is the only discontinuity ofq ′′

i , yields (54). Finally, by virtue of (59), (60) and (53),

‖q‖[x0,xn] =
∥∥∥∥∥
n−1∑
i=1

qi(�̃i , ·)
∥∥∥∥∥

[a,b]

�
∥∥∥∥∥
n−1∑
i=1

ri(�̃i , ·)
∥∥∥∥∥

[a,b]
+

∥∥∥∥∥
n−1∑
i=1

hi(· − xi)
0+ − �i

xi+1 − xi
(· − xi)+

∥∥∥∥∥
[a,b]
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� �
3

+ c1(m,�)
(
4m2

3
+ 1

)
�
6

� c(m,�)�,

we establish (56). This completes the proof of Lemma12. �

Proof of Theorem 5. Let

�i := S′′(xi+)− S′′(xi−), i = 1, . . . , n− 1.

SinceS ∈ �3[x0,xn], �i�0, 1� i�n− 1. By Whitney’s inequality there is a polynomialpk
of degree�k, satisfying

‖S − pk‖[xi−1,xi+1] �c(k)�k+1(S, (xi+1 − xi−1); [xi−1, xi+1]).
This in turn implies by Markov’s inequality on[xi, xi+1],

|p′′
k(xi)− S′′(xi+)|
� c(k)

(xi+1 − xi)2
max

1� j�n−1
�k+1(S, (xj+1 − xj−1); [xj−1, xj+1]).

By the same argument

|p′′
k(xi)− S′′(xi−)|
� c(k)

(xi − xi−1)2
max

1� j�n−1
�k+1(S, (xj+1 − xj−1); [xj−1, xj+1]).

Thus,

�i�c(m, k)(xi+1 − xi−1)
−2 max

1� j�n−1
�k+1(S, (xj+1 − xj−1); [xj−1, xj+1]).

Denote

� := c(m, k) max
1� j�n−1

�k+1(S, (xj+1 − xj−1); [xj−1, xj+1])

and apply Lemma12 to obtain the piecewise polynomialq. Now set

S1(x) := S(x)+ q(x), x ∈ [x0, xn].
Evidently,S1 is a piecewise polynomial of degree�k with the knotsx0, . . . , xn, satisfying

S′′
1(xi−) = S′′

1(xi+), i = 1, . . . , n− 1, (65)

so thatS1 ∈ C(2)[a,b]. Also, sinceS ∈ �3[x0,xn], we conclude by (55) thatS′′
1 is non-decreasing

on each interval(xi−1, xi), 1� i�n. Thus combining with (65), we have thatS′′
1 is non-

decreasing on the whole[a, b], so thatS1 ∈ �3[a,b]. Finally, (10) follows from (56). This
completes the proof.�
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