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Abstract

We consider 3-monotone approximation by piecewise polynomials with prescribed knots. A general
theorem is proved, which reduces the problem of 3-monotone uniform approximation of a 3-monotone
function, to convex local.; approximation of the derivative of the function. As the corollary we obtain
Jackson-type estimates on the degree of 3-monotone approximation by piecewise polynomials with
prescribed knots. Such estimates are well known for monotone and convex approximation, and to
the contrary, they in general are not valid for higher orders of monotonicity. Also we show that any
convex piecewise polynomial can be modified to be, in addition, interpolatory, while still preserving the
degree of the uniform approximation. Alternatively, we show that we may smooth the approximating
piecewise polynomials to be twice continuously differentiable, while still being 3-monotone and still
keeping the same degree of approximation.
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1. Introduction

Letfbe areal-valued function defined on the intetvak [a, b], andy a natural number.
Denote by

v

S (xi)
i=0 [0 ji (i — xj)

flxo, ..., xy] =

thevth order divided difference dfat the distinct pointso, .. ., x,. The functionf is called
v-monotone ifia, b], if f[xo, ..., xy] > 0forall choices of + 1 distinct pointsg, ..., xy, €

[a, b]. We denote byAE’aM the set of allv-monotone functions iifia, b], so in particular,
A[a bl andA .5 @re the sets of non-decreasing and convex functiohs i, respectively.

It is well known thatA ) Is the set of all bounded functions, having a convex derivative
on (a, b). Note that |ff = A‘a b V22, thenf is continuous oria, b) and f (a+), f(b—)
exist and are finite. Thus, in the sequel we assume that our functions are contindous on
The problems of monotone and convex approximation, on a finite interval, by piece-
wise polynomials with prescribed knots have been considered among others by DeVore
[3], Beatson1], Hu [5], Kopotun[8], and Shevchukl1?2]. Higher-order shape-preserving
approximation, i.e y-monotone approximatiom> 3, has been investigated in recent years,
with somewhat surprising results. Namely, the pattern of positive and negative results, that
experts had believed prevail, which goes back to Shvétidlvand shown to be valid for
v = 1,2, breaks down completely for>4 (seg[7]). In fact, recent results by Konovalov
and Leviatarj7] about shape-preserving widths demonstrate that fot, the statementf
fe AE’_lyl]ﬂC[(f)l’ll,andog FP(x)<1,x € [-1, 1],thenthere is a piecewise polynomial
s € A[V_l’l] of degree< v — 1 with n equidistant knots such thgt(x) — s(x)| <c(v)n™",
x € [—1,1]", isinvalid. Moreover, fow > 4 the best order of approximation one can achieve
for the statement is—3, and we have a loss of orderof 3. It is easy to construct splines
providing this estimate for = 1 and 2. Indeed, one may take the interpolatory piecewise-
constant function and the inscribed polygon, respectively. Therefore, the only outstanding
question is the case= 3. Does it follow the pattern known for= 1, 2, or does it belong
to the cases>47?
For f € Crs.51, and aninterval C [a, b], we denote by f|; the usual sup-norm dfon
I, and fork > 0 denote by, (f, h; I), thekth modulus of smoothnessfain|, with the step
h. For the intervala, b] itself we write|| f || := || f ll{4.5) @andwi (f, h) := i (f, h; [a, b]).
Finally, we need the notation;’ (f, h) := w; (f, h; [a, b]), for the Ditzian—Totik[4] kth
modulus of smoothness bassociated with the intervit, b].
For a given functionF' e A3 N C(f)b , Konovalov and Leviataf6] have constructed
a 3-monotone quadratic spl||$eN|th n eqwdlstant knots such that

IF = SII< ~5w1(F", 1/n),
n

wherec = ¢(a, b) is an absolute constant independenEathdn. This estimate provides

an exact order of 3-monotone approximation for certain Sobolev classes of functions, and
it was applied by Konovalov and Leviatdir] to prove upper bounds on shape-preserving
widths.
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Recently Prymal10] has extended the result [, constructing a 3-monotone piece-
wise gquadratic with arbitrary prescribed knots which give an estimate of the degree of
approximation in terms of the third modulus of smoothness of the function. An immediate
consequence for the equidistant knots is that for gach Afa’b] there exists a piecewise

quadraticS e Afa’b] with n equidistant knots, for which
IF = Sl<cws(F,1/n), @)

for some absolute constant= c(a, b).

Can one achieve higher degree of approximation with 3-monotone piecewise polynomials
of degree higher than 2? The main purpose of this paper is to give an affirmative answer to
this question in most of the conjectured cases, and to explain when itis impossible. One case
remains outstanding, we do not know whether an estimate involving the fourth modulus of
smoothness df is valid or not (see Remark 3 below).

In Section2 we state the main results and in Sect®we prove Theoreni after an
auxiliary construction. In Sectiofwe prove Theorer, followed by the proof of Theoref
in Section5.

2. The main results
We begin with
Theorem 1. Let F € 4, and f(x) := F'(x), x € (a,b). Given an integek >2, a

partitiona =: xg < x1 < --- < x,, := b, and a piecewise polynomiale Alzu,bl of degree
<k —1,with knotsx;,i =1,...,n— 1,such that

s(xi)=f(x), i=1,...,n—1, 2
there exists a piecewise polynomsa& Afa,b] of degree<k with knotsy;,i =1, ...,n—1,
for which

IF = Sli<e max If = sl - ©)

Xl x

where c is an absolute constarid ||-||, [y, ,.» denotes the.;-norm on[x;_1, x;]. In
factc <25.

Note that Theorerth reduces the problem of 3-monotone approximation of a 3-monotone
function in the uniform norm to that of convex approximation of its derivative with the
interpolation condition (2). Moreover the derivative is approximated locally inithe
norm. Since ordinary integration ehormally leads to a loss of an order of approximation
in the estimate, due to this local estimates, Theofiepields a “gain” of one order of
approximation.

Furthermore, as we will show, we do not require (2), but then the corcstaany depend on
the partition. To this end, we prove that any convex piecewise polynomial, (approximating
a convex function) can be modified in such a way that the modified piecewise polynomial
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interpolates the function at the knots, and the new approximation error differs from the old
one by a constant factor which depends only on the knots. Specifically, we prove

Theorem 2. Supposef € A7, ,, k>2,andx_1 :=a = x0 < x1 < -+ < X, 1= b =
xp+1. Then for each piecewise polynomiale Aﬁhb] of degree<k — 1 with knotsx;,

i=1,...,n— 1,there is a piecewise polynomigl € A[Za’b] of degree<k — 1, with the
same knots such that
(1) f(xi) =s1(x), i=0,...,n,
@) I1f = s1llpy g SO I =Sl _pxinys i=1,..000,
wherec(m) is a constant depending only on the scale of the partitiono, . . ., x,, i.e.,
m—  max {xiJrl_xi;xi_xil}. @)
I<i<n=1Xi —Xi—1 Xi+1— X;

Remark 1. The proof implies that(m) <4(2m + 1). In particular, since for equidistant
knotsm = 1, and for the Chebyshev knats< 3, in both cases(m) is an absolute constant.

Remark 2. One can show that, in general, it is impossible to reptdee by an absolute
constant. Indeed, for = 2,k = 3, we haver(m) > %m.

The following is an immediate consequence of Theorems 1 and 2.

Theorem 3. Let F € Af’a,b] and f(x) := F'(x), x € (a,b). Given an integek >2, a
partition x_1 :=a =: xg < x1 < -+ < x, := b =: x,41, and a piecewise polynomial

s € Alza,b] of degree<k — 1, with knotsx;, i = 1,...,n — 1, there exists a piecewise
polynomialS e Aﬁ;,h] of degree< k with knotsy;, i =1, ...,n — 1, for which
|F— SI<c(m) lglia<><n(xi = Xi—D) I f = Sl _poxiia1 (%)

where m is the scale of partitig@d), andc(m) < cm for some absolute constant c.

Note that (5) is completely trivial if is unbounded ir{a, b). If f is bounded there, then
fla+), f(b—) < oo, we put f(a):= f(a+) and f(b) := f(b—), and the conditions of
Theorem?2 are satisfied.

In order to apply Theorer@to obtain Jackson-type inequalities for 3-monotone approx-
imation by piecewise polynomials with equidistant knots, we summarize results [§]Hu
Kopotun[8], Leviatan and Shevchul®, Corollary 2.4], Shevchukll, p. 141]; Shvedov
[13] for convex approximation by piecewise polynomials. Namely,

Proposition. Letk>1 andr >0, be integers such that eithe>2 or 2<k + r <3.Then
foreachf e C[(:)Ll] N A[Z_lyl] there exist piecewise polynomials s2 € A[Z_lyl] of degree

<k + r — 1 such thats; has n equidistant knotand satisfies
c(k,r)
nr

If = stlli—1.2) < or(f7,1/n; [-1,1]), (6)
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andsz has knots on the Chebyshev partitiand satisfies

K9 o 0
If = s2ll1, < %w,f(f( ) /m: [~1.1D). @

Moreover,s1 ands; interpolate f at the respective knots.
If, on the other hand, &r <1 andk + r >4, then,in general, §) and (7) cannot be
achieved.

This together with TheorerB immediately implies all except one of the affirmative
statements of the following theorem.

Theorem 4. Letk >1andr >0, be integers such that eithez>3 or 3<k+r <4, (k,r) #
(4,0). Then for eachF e C[(i)l’ll N A[s_l’l] there exist piecewise polynomials, S» €
A[3_1‘1] of degree<k + r — 1, such thatS; has n equidistant knotsnd satisfies

clk,r)

n}"

IF — S1ll;_1.1) < or(FT, 1/n; [-1,1]), (8)

and S, has knots on the Chebyshev partitiand satisfies

clk,r)

IF — Sall;_1.4) < ol (F7, 1/n; [-1,1]), )

If r<2andk + r>5,then(8)and(9) in general cannot be achieved.

The only positive case claimed above which cannot be concluded from Thebiem
(k,r) = (3,0), which is (1). The negative results follow from ShevcHak, Theorem
16.1], who extended the original negative result of Shvdday.

Remark 3. Note that we have left out one case. Namely, it is unknown to us whether it is
possible to construct for an arbitrary 3-convex functigra cubic piecewise polynomial
Se A[3_1’1] with n equidistant knots such that

|F— Sll—1.1) Scwa(F, 1/n; [-1,1]).

A 3-monotone function iifa, b], necessarily possesses at least one continuous derivative
in (a, b), and indeed all we can say about the piecewise polynomials we constructed in
Theorems 1 and 3 is that they possess this minimal possible smoothness, namely, they are
in C[(al’)b]. However, this can be improved and it is possible to obtain smoother piecewise
polynomials. We prove

Theorem 5. Suppose € Af’a)b] is a piecewise polynomial of degreek, k > 3, with knots
on the partitionx_1 :=a =: xg < x1 < --+ < x, := b =: x,4.1. Then there is a piecewise
polynomialS; of degree< k with the same knotsuch that

3 (2
S_‘]_ € Ala,b] N C[a,b]’
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and

IS —S1ll<clk,m, ) max wpya(S, (xj11 —xj-1); [xj-1, xj41]), (10)
1<j<n—-1

IJxn—
wherec(k, m, u) depends only on kn, i, where m is given b{4) and

4=  max (]._i)(xi+1_xi). (11)

0<i<j<n Xj — Xi

Remark 4. For equidistant knots: = 1 andu = 1, and for the Chebyshev knois<3
andu < z. Thus, for these partitionsk, m, p) <c*(k), depending only oR.

In view of this remark a standard proof combining Theorems 4 and 5 yields

Theorem 6. Letk >1 andr >0, be integers such that eithec>3ork +r = 4, (k,r) #
(4,0). Then for eachF ¢ C[(i)l,l] N A[3_1,1] there exist piecewise polynomialg, S» €
A[3_1’1] n C[(ffb] of degree<k +r — 1, such thatS; has n equidistant knotand satisfies

clk,r)

nr

IF - S1ll_1.1) < o (FT, 1/n; [-1,1]), (12)

and S has knots on the Chebyshev partitiand satisfies

clk,r)

IF — Sall;_1.1) < ol (F7, 1/n; [-1,1]). (13)

If r<2andk + r >5,then(12) and(13)in general cannot be achieved.

3. Auxiliary construction and the proof of Theorem 1

Given a real functiorf defined on[a, b], let L(-; f; a, b) denote the linear Lagrange
interpolation off at the pointsa andb. Throughout this section we take> 2.
We begin with

Lemma 1. Let f € A[Zﬁl’b], and suppose that € A[Za’b] is a polynomial of degreelk — 1,
satisfying f(a) = q(a) and f(b) = q(b). Then there exists a polynomial A[za,b] of
degree<k — 1, such that

fla) =p(a), fb)=pb). (14)

g @<p'@, pb<qdb), (15)

)
(p(1) — f(1))dt

)
(q@t) — f@)drt

a

<2
[a,b]

(16)

a [a,b]
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and
b b
/ mmdnz/.ﬂnda 17)

Proof. If

b b
fq(r)dr>/ £y,

then we takep := ¢ and (14)—(17) are self-evident. Otherwise,

b b
/fmm—/qmm=m>o
Clearly,
0]
A< f (q(t) — f(t)dt 18)
¢ [a.b]

Leti(:) := L(-; f; a, b). Then by the convexity of /(x) > f(x), x € [a, b]. Hence,

X X b b
/l(t)dt—/ f(t)dt</ l(t)dt—/ f@)dt =: B>0, x €la,b]. (19)

Let

_ Al(x) + Bq(x)

p(x) = A1 B x € [a, b].

Thenpis a convex combination dfandq, and (14) and (15) are readily seen (note that for
(15) we use the fact that is non-decreasing). Far € [a, b] we obtain by virtue of (19)
and (18),

/xp(t)dt—/x f@®) dt

- ‘AiB/:a(r)—f(r))dH AfB/axm(r)—f(r))dt
< AiB /axa(t)—f(r))dr +Af3 /ax(q(t)—f(t))dt
A )
e Thb e IACCRECE I
2B ) ,
<xvs |l wo-row]

<2

3

la,b]

)
/ (q(t) — f(t)) dt
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that is, (16). Finally,
/b (t)dt = A fbl(t)dt+ B /b (t)dt
L PAEATTR A+l 1

A b B b
:A—{—B (—B+L l(l‘)dl‘)-}-m(/; C](I)dl+A>

=\ f@)di,

a

and (17) holds. This completes the proof.]

Next we show

Lemma 2. Letg € A[Za,b] be a polynomial of degre€ k — 1, and leto and f§ be arbitrary
non-negative real numbers. Suppose thatd, are real numbers satisfying,

< (q(b) — ﬁ;:;q(a) — ) <dy (20)

and
d, <q'(a)<q'(b)<dp.

Then there exists a polynomiale A[za’b] of degree< k — 1, such that

pla)=q(a)—o, pb)=qb) —p, (21)

da <p'(@)<p'(b)<dp (22)
and

p(x)<q(x), x €la,b]. (23)

Proof. If o« = f3, then we takep(x) := q(x) — o, a<x <b, and (21)—(23) are obvious.
Otherwise, assume that> f (the other case being similar). Let

_ (b—a)dy+q(a) —q(b)

= P ,

and note that the right-hand side of (20) is equivalent to the inequatity. Put/(x) :=
dp(x — b) + q(b) — A, x € [a, b]. Then,

A

I(x)<dp(x —b) +q(b)<q(x), x €]la,b] (24)
Now let
p(x) =20 = Dgx) +1(x)), x€la, bl

Then the polynomiap is convex being a linear combination loAndg, with non-negative
coefficients, and straightforward calculations yield (21) and (22) (again note thapr (
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we use the fact that’ is non-decreasing). Finally by (24),
PN <ATHG = D) +¢(x) = q(x),  x € a, b,
thus we have established (23). This completes the prdaf.

Now we establish some relations between two convex functions in an interval. First

Lemma 3. Letf € 42 jandg € A? ]ﬂc(l) ],be suchthaif (z;) = g(z;),i = 1,2.

[z1,22 [z1,22 [z1,22

Let/;(x) := (x — z)g'(zi) + g(zi), i = 1,2,and denote
72
4= / W) — f@)4dr, i=12.
21

Then

O
(f (1) —g(0)dr

Zi

A;i < , i=12 (25)

[z1,z2]

Proof. We begin withi = 1. Sinceg is convex, it follows thati(x) <g(x), x € [z1, z2]-
Sincef is convex andj is linear, there exists @ € [z1, z2], such thatf (x) <l1(x), x €
[z1, 0], andl1(x) < f(x), x € [0, z2]. Hence,

0 0
Ay = / () — F@)di< / ((t) — f(0))dt
71 71

©
< (f (1) —g(0)dr

<1

)

[z1.z2]

and (25) is proved for = 1. This in turn yields

)

[z1.z2]

72
o< 'f() (f (1) — g(1) dt

and the proof of (25) fof = 2 is complete. O
We also have

Lemma 4. Let f, g € 42 ,, be such that

Jf(b) = f(a) = g(b) — g(a). (26)

Then

flla+H)<g' (b-).
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Proof. The functionsf’ andg’ are non-decreasing da, b). Suppose to the contrary that
f'(a+) > g'(b—). Then

b
Fb) - fla)= / Flx)dx= flah) b —a)

b
g )b —a)> / ¢/ () dx

=g(b) — g(a),
contradicting (26). I

An immediate consequence in the context of our paper is

Corollary 1. Let f € A[za’b] and lets € A[Za’b] be a piecewise polynomial of degree
<k — 1, with knots on the partitiom =: xg < x1 < - -+ < x,, := b satisfying(2). Then for
i=2....,n—1,

i <s' =), i=2,...,n—1 (27)
and

S <fxi=), i=2...,n—1 (28)

We are ready to begin our auxiliary construction. Givere A[Za,b] ands e A[Za,b] as
above, denote
M = 1g]la<Xn ||S — f”Ll[xi—l,xi] . (29)
For afunctiorg, we writeg € A; ;, 1<i < j<n—1,if gis aconvex piecewise polynomial
of degree<k — 1, on[x;, x;], with knotsx; 1, ..., x;j_1, and satisfies’(x;+) <g’(x;+)
andg’(x;—) <s'(x;—), andg(x;) = s(x;) andg(x;) = s(x;). Foreachr =1,...,n—1
let

S (xi—) ift e (xi—y,xi], i=1,...,r—1,

h (t) o S,('xr_) If t € (xr—l, -xl’]a
) s (g ) if r € (xr, xr41),
flxicat) ifrelxi—,x), i=r+2...,n,
and set

gr(x) = f(xr)+/ hy(t) dt.

Xr
By virtue of Corollary 1,1, is non-decreasing ofa, b), andg, is convex there. It follows
by (2) thatg, (x,+1) < f (xr41) @andg, (x,—1) < f (x,-1). Hence,

gL fx), x€la,b]\ (x—1,x41). (30)
By Lemma3,

Xr+1
/ et = f@)ydi<M (31)
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and
/ "6 — FW) d1 <M. (32)
Xr—1

For each pair i < j<n — 1, we will construct a functiog; ; € A; ;. To this end, if

j =1i+1, thenwe seg; ;i1 := S|[x,-,x,~+1]’ evidently belonging to; ;1. Otherwise, we

observe that by (30), we haye(x;) < g; (x;) andg; (x;) < g;(x;).Alsog; —g; is continuous
on [x;, x;], therefore there existstae (x;, x;) such thatg; (0) = g;(0). In addition, by
(27) and (28 (1)<hj(t), t € (x;, x;), whenceh; — h; is non-negative onx;, x;), and
inturng; — g; is non-decreasing there. Hence

((x) if x <0,
max(gi (x), g;(0) = {?j((x)) s
and we seg; j(x) = maxg;(x), g;j(x)}, x € [x;, x;]. Note thatg,-,j is convex in[x;, x;]
as the maximum of convex functions. For some integgr+ 1 <m < j, the point)) satisfies
0 € [xu—1, xm]. Clearly, for each integdr! # m,i + 1<I<j, the functiongi’j is linear
on[x;_1, x;], but it may not be so on the internv@al,,—1, x,,]. We wish to replace it on the
latter with a suitable polynomial of degreek — 1. Sinceg; ; is convex, we have

?i_j(xm) - §,~,,~(xm71)

Xm — Xm—-1

gi/,j (Xm—1+) < <§j/,j (xXm—).

Put
, , . , . .

da = {sf’(écn;l;:) Ic:the’::V\;sle_ "oand dy = {j"(&:l—) gthemrw_isg
Then it follows that

da <Z} ;(om-1H) <Z/ ; (o —) <dp.
Also, in view of (27) and (28),

dy <" (tm—14), 5" (xm—) <dp.
Applying Lemma2 with a := x,,—1 andb := x,,, d, andd,, as aboveg := s|(x,_;.x, ], and
o= f(xm-1) — & j(xm—1) @ndf := f(xm) — g, ;(xn), We obtain a suitable polynomial

p. Put

gi,j(x) if x & [xm—1, Xml,
p(x) if x € [xm_1, xn].

gi,j(x) = {

Then (21) and (22) yielg; ; € A; ; and (23) gives

/ " (i (1) — f()4 di < / " 5) = F(1))+ di <M. (33)
Xm—1 Xm—1
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By virtue (31) and (32) we have

Xi+1
f 0 — fO) di <M (34)
and
/ " (g1 () — F@O)Ldt <M. (35)
Xj-1

Since (30) implies thag; ;(x) < f(x) forall x € [xj—1,x1, i +1 <1 < j, I # m, we
conclude from (33)—(35) that

Xj
/ (8.5(0) — f (D)4 dr <3M. (36)
If 6(-) is a continuous function ofx;, x;1, then we have
“) Xj Xj
o(r)drt < / o) dt| + / o(t)4 dt. (37)

[xi,xj]

Indeed, fory; < x < x;,if [ 3(r)dt >0, then

ogf 5(r)dr<f 5+(t)dt</15+(t)dt.
X Xi Xi

On the other hand, 'f;, d(t)dt < 0, then

/xb‘(t)dt gfxb‘_(t)dtgij o_(t)dt

- —/ ' 5(t)dt+/ " 50 dt.

Thus, (37) is proved. Therefore, if we denote

)
Ai () = (&i,j (1) — f(1))dt,

then by (36),
HAI'J”[X,-,XJ-] < |Ai,j(xj)| + 3M. (38)

The next lemma establishes the existence of functions inwith associated; ;’s with
desired properties.

Lemma 5. Let1<i <n—2be afixed integer. Thethere exist an integer+1< j <n—1,
and afunctiorg;j € A, j, such that for

)
A0 = / (&0 = Fw)r,
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we have
‘ A

If j <n —1,then,in addition,

*

g <12M. (39)

~
[xi,x;]

At (xj) < 0. (40)

Proof. If 4; ,_1(x,—1) >0, then by (36)4; ,—1(x,—1) <3M, and setting;n_l = gin-1,
we see that (39) follows by (38). Otherwise, at least one of the above numhersx; ),
1<r<n—i—1,isnegative. If forsomedr<n—i — 1, -6M < 4; i (xi4r) < 0, then
wetakej :=i+r andg;:j := g;,j- Then (40) is fulfilled, and again by (38), we obtain (39).
Finally, if all negative numbers among the above are 6 M, thenwe let Kr<n—i—1,
be the smallest such thdf ; ., (x;1+-) < —6M. Evidently,r >2, sinceg; i1+1(x) = s(x),
X € [xi, xi+1], whencel4; j+1(xi+1)| <M. Setj := i + r, and letp := s}[x,-_l,x,]' Then

by (29),

()
f (p(t) — f(1)dt <M. (41)
Yi-1 [xj—1,%]
Denote
< o &1t i xoe [x, xj-1),
8i,j(¥) = { p(x) if x € [xj—1, x;].

Thengi,j €A andgi,j €Aj 1, implythatg’,-,j € Ajj. Letgl.*’j (x) = /lg,',j(x)—i-(l—
)8 j(x),x € [x;, x;], wherei := 6M|A,-,j(x,-)|*1. Clearly,/4 € (0, 1), sothag;j €A
The choice of implies that 6< 4; ;_1(x;j—1) <3M. Hence by (38)

= [ 4.1
[xi,xj-1]

< i j—1(xj—)| +3M

< 6M.

[xi,xj-1]

©)
/. (8i,j (1) — f(®)dt

Also, by (41)

A j-1(xj-1) +/ (p(®) — f(1)dt

Xj,]_
< i jalxj—)l+M
<4M, x € [xj_1,xj5].

[ @w - ranar

Therefore,

)
» (8i,j () — f(1)dt

Xi

<6M. (42)

[xi,x;]
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In particular,
Xj
4155 = 20y + =) [ @@ = s
< —-6M+ (11— A)6M <0,
so that (40) is verified. Finally, by virtue of (38) and (42),

)
42,], . <A+ @D [ @ - ranar
Li-xj] o i [xi,xi]
i Xj
< /l(lA,-,j(xj)| +3M)+6(1— )M =6M +6M — 3AM
< 12M.

This proves (39) and completes the proof of LenBna [

Proof of Theorem 1. We look for the required functio8in the form

X

S(x) := F(x1) —l—/ g()dt, x €la,b],

X1
where

s() if  t e [xo0,x1) U (xp—1, x4l
g() it te[xg, xp-1]

g() = {

isin A1 ,_1. The latter provides the 3-monotonicity 8f We are going to construgts) by
induction.

First we observe that when we apply Lemth#or [x;_1, x;], 2<i<n — 1, withg :=
S|[x’__l’x1_], then the resulting polynomialis in A;_1 ;. Also, recall that ifg € A; ;, 1<i <

j<Il<n—1,andg € A;;, theng € A; ;. We construcg by induction. We apply Lemma
for [x1, x2], with ¢ := s|[x1 o]’ obtain a polynomiap € A1, and putg(x) := p(x),

x € [x1, x2]. Suppose thay is already defined ofx1, x;] for some 2Ji<n — 2, itisin
A1 ;, and satisfies for alt € [x1, x;],

/x(g(t) — f(0)dt] <24M, (43)
X1

whereM is given in (29), and

<12M. (44)

f (g(t) — F())dr
x1

Then we defing on somdx;, x;1,i < j<n — 1, sothalg € A, ;, (43) remains valid, on
the larger intervalxy, x;], and if j < n — 1, then also such that

<12M. (45)

f ") = F@) di
X1
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/ (g(t) — £(1))de <O, (46)
x1

then we takej = i 4+ 1 and apply Lemmad. for [x;_1, x;], andg := s|[x' ol We put
J=Lr)
g(x) := p(x), x € [xj_1, x;], wherep is the resulting polynomial. For € [x;_1, x;1, we
have by 44) and (16),
X
| o~ ronar
X1

X,

< +

(g — f()dr
x1
< 12M + 2M <14M.

/ )~ @i

Hence, combining with (43) fox € [x1, x;], we see that (43) holds for € [x1, x;].
Moreover, (17) implies that

0< / Y o) = Fay dr<am.

j—1

which together with (44) and (46) yield
“1om< f "(g) — f() dr<2M.
X1

This proves (45). Note that here is the only place we make use of (17).
Otherwise,

/ (1) — f(t))dt > 0. (47)
X1

We apply Lemmab, and get some integgri + 1<j<n — 1, andg;{j € A, j, satisfying
(39), and (40) if j < n— 1. We putg(x) := ng(x)’ x € [x;,x;]. If j =n—1,then
(39) implies (43) forx € [x1,x,—1], and the construction is complete. Otherwise, for
x € [x;, xj], by (39) and (44),

/ (g(®) = f(®)dr (g(t) = f(t)di
X1

X1

< 12M + 12M < 24M.
Hence, (43) holds for € [x1, x;]. Also, by (47) and (44),

< +

/. (g7 ;) — f(1)dt

0< / e — f@pdi<iom,
X1
which combined with (39) and (40) give
—12M < /xj(g(t) — f(1)dt<12M.
X1

This proves (45) and completes the induction step.
Finally, in view of the definition of5, we see by (43), that (3) holds witk¢25. [
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4. Proof of Theorem 2

Recall that foif defined or{a, b], we letl¢) := L(-; f; a, b) denote the linear Lagrange
interpolation off at the pointsa andb. (Note that’(x) = f[a, b], x € [a, b].) We begin
with some lemmas.

Lemma6. Let f € A%, ands e A7, are such that eithes’(b—)< f[a, b] or
s'(a+) = fla, b], then

If=<2f — sl

Proof. Assume that’(b—) < f[a, b], the cases’(a+) > fla, b] is symmetric. Ifxg :=
sup{xe (a,b) : f'(x)< fla, b]}, thens’(x) <s'(b—) < fla, b]< f'(x),xo <x <b.Hence,

ILf =1l = [(x0) — f(x0)
b
= | (f'6)=1'(x)dx

X0

b
< | (ffx) =s'())dx

X0
< f(b) = s(b) — (f (x0) — s(x0))
<20f=sl. O

The next lemma is essential to our proof.

Lemma 7. Suppose that f is defined ¢, b1], and that s is a piecewise polynomial of
degree<k — 1, with knots a and bgy <a < b<b1, such thats’(a+) < fla, b] <s'(b—).

If f,s € A[Zal’bﬂ, then there exists a piecewise polynomiaE A[zal,bﬂ, of degree<k — 1,
with knots a and bsatisfying

(1) s'(a+)<sp(a+),  s5(b—) <s'(b-),
(2) s1(a) = f(a), s1(b) = f(b),

B3) I f = sillia,p1 <A f = slla.p)

@) 1 f = s1llaro <A f — slliay,b11-

Note that if[a, b] = [a1, b1], then boths ands1 are polynomials of degreg k — 1 on
[aa, b1].

Proof. If f(b) — f(a) = s(b) — s(a), we takes1(x) := s(x) + f(a) — s(a), x € [a1, b1].
Then (1) and (2), are self-evident, and

ILf = silliapr I = sliap) + 1 (@) = s@I <2/ f — sllfa.b]

and

ILf = s1larp SN = Slliagpa) + 1 f (@) = s@I <2 f = sll{ag.be1-
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Assumef (b) — f(a) < s(b) — s(a), the casef (b) — f(a) > s(b) — s(a) iS Symmetric.
We first definesy in [a, b], and then we extend it @1, b1] if [a, b] # [a1, b1].

Let5(x) := s(x) —s'(a+)(x —a), x € [a,D], and f(x) := f(x) — s'(a+)(x — a),
x € [a, b]. Then| f = Sllaer = If — slla.b)s 5’(a+)~ =0, §'~(b—) = s'(b—) — s'(a+),
and f[a,b] = fla,b] — s'(a+)>0. In particular f(b) — f(a)>0, and since by our
assumptionf (b) — f(a) < 5(b) — 5(a), it follows that3(h) — §(a) > 0. Thus we may set
51(x) := f(a) + AG(x) — 5(@)), x € [a, b], wherel := (f(b) — f(a))(3(b) —5(a) L.
Then 0</ < 1 andsy is convex infa, b]. Also §1(a) = f(a), 51(b) = f(b), §1(a+) =0,
andsj(b—) = A5'(b—) < s'(b—) — s'(a+). We sets1(x) = 51(x) + s'(a+H)(x — a),
x € [a, b], and it has properties (1) and (2). Finally, note tfat 0 in [a, b] so thats is
non-decreasing there, afjd(-) — 5(a)|lj4.5; = 5(b) — 5(a). Hence

1/ = stlan = | F = 5]

[a.b]
= |70 =50 +5@ - f@ +50 =5@ + @ -0
<2|f-3 iy TS0 = 5@ = 2G0) = 5@,
<2|f-5 wnt (1= ADIsb) = s(a)l
=2|f=5| , + O =i@ = (f®&) - f@)
<A4|f-35 = AN f = slliap -

and (3) is done.
Further, if(a, b] # [a1, b1], then we extend; either to the left or to the right or both, as
needed, by setting

s(x) + f(a) —s(a), x €la1,a),
s(x)+ f(b) —s(), x € b,bs].

Thenitis easy to see thatis a convex piecewise polynomial of degreé — 1 on [a, b1],
with knotsaandb, which possesses properties (1)—(3). We only have to estimate the distance
betweerf ands1 on the intervalgay, a] and[b, b1]. Now

If = sillppa <If = sl + 1) = sOI<2)f = sllip,b1,
and similarly
If = s1lliar.a) <21 = sliag.a)-

Combining these with (3), we establish (4), and the proof is compléié.

s1(x) = {

Next is a lemma which is needed in the proof of Len@na

Lemma 8. Supposef € 4%, , , ands € 42, ,a < b < by, ands'(b—) — f[b, b1] > 0.
Then

" (b=) — fIb, bal) (b1 — DY 2| f = slp.py) -
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Symmetricallyif f € A {av.b]’ ands € A la.pp @1 < a < b, and f[a1,a] — s'(a+) > 0,
then

(flaz, al = s"(a+))(a —a1) <211 f — slljay.a]

Proof. We prove the first statement, the proof of the other is similarxiet= sup{x €
(b, b1) : f'(x)<s'(b—)}. Then
b1
"(b=) = flb, bal)(b1 — b) = A (s"(b=) — flb, ba]) dx

b1

_ fb (s'(b—) — /() dx
X1

< fh (s'(b—) — f'(x)) dx

X1
< /b (') — f'(x)) dx

= s(x1) — f(x1) — (s(b) — f(b))
< 2s = fllippy >

where in the second inequality we used the fact th&g non-decreasing so that (x) <
s'(b—)<s'(x),x € (b,xp). O

The following lemma plays a crucial role in the proof.

Lemma 9. Leta; <a < b < by, m := max{ = f‘al

} andf e A[al b,]» @nd suppose
thats € A[al,bl] is a piecewise polynomial of degreek — 1 with knots a and bsatisfying

f(a) = s(a), f(b) = s(b). Thenthere is a polynomiat; € A[Za,,,] of degree<k — 1 such

that

(1) s'(a+) <sy(at),  s1(b—) <s'(b—),

(@) fla,a1]l =: ky<sylat), sy(b—)<kp := f[b, bal,

Q) si(a) = f(a), s1(b) = f(b),

@ If - Sl”[a,b] <c(m) || f — S|| [a1,b1]’

wherec(m) <2m + 1.

Proof. Subtracting a linear function if necessary, we may assumefttigt= f(b). If s
is constant o, b], takesy(x) := s(x), x € [a, b]. Otherwise, since(b) = s(a) andsis
convex, we have’'§b—) > 0 > s'(a+). Denote

A :=min L , ka >0
s'(b—)" s'(a+)
If 2>1, then takes1(x) := s(x), x € [a, b], and there is nothing to prove. Otherwise
A < 1, and without loss of generality we may assume that s/(kTh—) < 1. Then let

s1(x) = s(a) + A(s(x) — s(a)), x € [a, b], sO thats; € A[za,b] and it is a polynomial of




D. Leviatan, A.V. Prymak / Journal of Approximation Theory 133 (2005) 147-172 165

degreegk 1. ltisreadily seenthat(a) = f(a) = f(b) = s1(b).Also, sinces’(a+) < 0

and;#es > i > 0, we have
/ ) ka
sy(a+) = As'(a+) = ’(b ) s'(a+) > (a+)s (a+) = kg4
and
, .y kp
51(b—) = As'(b—) = . )S "(b-) = k.

Letxp := sup{xe (a, b) : s'(x)<0}. Since O= s(b) — s(a) = fab s'(t) dt, we have

a b
s —s(@)llja.p) =/ s'(1) dt =/ s'(1) dt < (b — x0)s'(b—) < (b — a)s' (b—).

0 0

This in turn implies by virtue of Lemma,

Is — s1lla,p = ng% Is(x) — s(a) — A(s(x) — s(a))]

A= ls = s@lap A= DB —a)s'(b—)

= M(b —a)s'(b=) < (s"(b=) — kp)(b — a)
s"(b—)

<m(s'(b—) — kp) (b1 — b) <2m If— S||[b,b1] .

Hence,

I = stlliasy < If = sllasy + Is = stllia
<Cn+DIf —slay,pn >

and Lemma is proved withc(m) =2m + 1. O

Finally, we need a one-sided (weaker) version of LerBmikhis version is required when
f may not be extended to the left afis a convex function, i.e., whefi(a+) = —oo.

Lemma 10. Leta < b < by, m := b —5,and f € A[a by)» @nd suppose that € A {a.b1]
is a piecewise polynomial of degreék — 1 with knot b,satisfying f (a) = s(a) and
f(b) = s(b). Then there is a polynomiad; € A[Za’b] of degree< k — 1 such that

(1) s3(b—)<s'(b-),

(2) s1(b—)<kp := f[b, b1,

3) s1(a) = f(a), s1(b) = f (D),

@ If - Sl”[a,b] <c(m) || f - S||[a,b1],

wherec(m) <2m + 1.
Symmetricallyleta; < a < b, m = and f € A[al p» @nd suppose that €

aa’

A[Zal,b] is a piecewise polynomial of degregk — 1 with knot a,satisfyingf (a) = s(a) and
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f(b) = s(b). Thenthere is a polynomiat; € A[Za,h] of degree< k — 1 such that

(1) s"(a+)<sp(a+),

(2) fla, a1l =: kq <sy(a+),

(3) s1(a) = f(a), s1(b) = f(b),

@) f = s1lljap) <cO) | f — slliag.p

wherec(m) <2m + 1.

Proof. We indicate the proof for the first case, the second is completely analogous. We
repeat the proof of Lemm@, except that this time we simply take= %. Properties
(3) and (4) are the same and for (1) and (2), we deal only with the poi

We are ready with the

Proof of Theorem 2. Denote
L) =LGC; fix—1,x), r=0,...,n+1

LetA C {1, ..., n} be the set of all integejssatisfyings’(x;_1+) <l’/ <s'(xj—). Forall
j ¢ Awe setsi(x) :=1j(x), x € [xj_1,x;]. By Lemma6 '

1 = sl ) S20F =5l g1 (48)

In order to defines; on[x;_1,x;1, j € A, we first assume k j < »n and apply to the
interval[x;_», x;11], first Lemma7 and then Lemma@, witha = x;_; andb = x;. We

i 2
conclude the existence of € 47, _, . ., such that
1Lf = 51l g1 <A@m A DI =5l ;01 (49)

and f(x;_1) = s1(xj_1), f(x;) = s1(x;).

Finally, we have to deal with the possibility that eithiee= 1 or j = n is in A. To this
end, assume & A, the caser € A being symmetric, so that(a+) < fla, x1] <s'(x1—).
Then by Lemm& we have a convex piecewise polynomigin [a, x2] which interpolates
fataandxy, satisfies (x1—) <s'(x1—), and is such that

If = S1llfa.xa) <A1 — Slla,xa]-

We now apply Lemmd0 and obtain a polynomiah on [a, x1], of degree<k — 1, which
interpolated ata andx, satisfies (x1—) <§7(x1—), and is such that

If = s1llfax <4@m + DI f = $llig.xp - (50)

We are left with having to show that combining the various pieces we hayﬁeam[zayb].
To this end, all we should show is that

si(xj—)<sp(xj4+), j=1,...,n—1 (51)

Indeed, ifj, j+1 ¢ A, thens (x;—) = I} ands (x;4) =1}
is evident in view of the convexity df

+1- and the inequality; </’
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If j,j+ 1€ A, then by virtue of Lemmas 7 and 9 or 10, and the convexitg o
conclude that

5100 =) <s'(xj—) <" (xj4) <sp(xj+).
If jeA,j+1¢ A, then by Lemma 9 or 10,
s1(xj =) < = sh(x ),

andthecasg ¢ A, j + 1€ A, is symmetric. Thus (51) is proved.
In conclusions; is a convex piecewise-polynomial function of degree — 1, satisfying
s1(x;) = f(xj), j =0,...,n,and (48)—(50) imply

If = stllpg_y) SA4Cm+ DI =Sl _pniagy» 1SS U

5. Proof of Theorem 5

The following lemma is a modification of a lemma by BondarefikoLemma 3]for
arbitrary partitions, it can be proved in the same way, so we omit the proof.
Lemma 11. Let B> 1 andu be given by(11). Then for every step function

n—1

gr) =) o(x—x)%. x€la,bl,

i=1
with o; >0, there exists a polygonal line

n—1

Bi
(x) = (X — X))+,
P ; (Xit1 — xi) i
satisfying
24 .
Pil<—, i=1...,n—1, (52)
B
and such that
lg(x) — p(x)| < 8uBA, x €la,b], (53)
where
A:= max o
i=1,...,n—
Lemma 12. Letxg < x1 < --- < x, be a given partitiong, ..., d,_1 a sequence of

non-negative numbersatisfying

6 < (g1 —xi—1)2Q, 1<i<n—1,
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where(2 is some positive constant. Then there exists a cubic piecewise polynomial g with
the knotsyy, ..., x,_1, such thayy c®

[a,b]
q//('xl+) - q//('xi_) = _5ia i = 15 cee = 17 (54)
qgeM} . i=1....n, (55)
”q”[a’b] <c(ma /’L)Qv (56)

wherec(m, p) is a constant depending on the scale of the partitiorgiven in(4) and u,
defined by(11)

Proof. For 1<i<n — 1, we construct an auxiliary functian(d, x), d, x € R, as follows.

Put
s+ KL =X Xj — X1
! Xi41— Xi—1

o, 5: = 0i,

Xl — i1
ands} := min{d;", 5; }. Clearlyd; (x; —x;—1) = 6; (xi41—x;), ands; +5; = J;. Define

0, x ¢ (xi-1, Xi1+1),
)

gi(0,x):={ v @ —xi-1), x € i1, x],
=0
Xj41—Xi

(x —Xxit1), X € (X, x41),

and let

X t
qi (6, x) 1=/ f gi(6,1)dtdt.
x0 Jx0

It follows by straightforward calculations that

0, x € [a, x;-1],
5+
qi(8,x) = § Py

0;
s & — XD+ wi O — xi) +hiy x € (6, Xig1),

w; (0)(x — xi) + h;, x € [xiy1, b,

(x — xi-1)3, x € (xi-1, X1,

where

0
w; (0) = E(xi+1 —Xi—1)

and

0+ 65—
= 16 (i —xi-1)° + 16 (xi — xiy1)2.

Clearly,q; (3, -) € C[(c},)b]’ and

hi

Q;/(é» Xi +) - q:/(é’ Xi _) = _5i7 (57)
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moreovery; is the only point of discontinuity of the second derivativezaf, -). Finally,
if 0] <07, then

i

a6, x>0, xela,bl, (58)
thus we takeéd| <97
Let
_Jx, x>0, o. |1, x>0,
(x)+—{o, xr<o and (")+'—{o, £ <0,
and denote

qi (8, x) = 1i(8,X) + wi (§)(x — xi)4 + hi(x — xS, x € [a, b].

Then
ri(0,x) =0, x & (xj—1,Xi11), (59)
and forx € (x;_1, x;)
0+ :
(0.1 = |— T (x —xi )3 <2 (x; — x_1)?
|7 (0, x)| 600 — 1) (x — xi-1) 6 (xi — xi-1)
< }( Xi —Xi—1 )29
6 \xit1—xi—1
Q
~ 6'
The same inequality holds far € [x;, x;+1). Hence,
Q
|ri (0, x)|<€, x € (X1, Xi41)- (60)
Also
O; 0;
0<hi < (i = xio0)® + (i — xi42)?
1
< 651' (xi41 — Xi—1)% (61)
PutB := 4%2, wherem is the scale of the partitioxy, . . ., x,, see (4). We will show that

for f3;, satisfying

201 (xip1 — xi-1)°
1B;| < & (x“B X 62)

we may choosé in a way that guarantees

Pi

B
Xi+l — X

—w;(0) =
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ie.,
—28.
_ b , (63)
(i1 — xi) (X1 — Xi—1)
and such that
0] <07 (64)
Indeed,
Xi —Xj-1 >i’ Xit+l — Xi 2i7
Xit1—Xi—1 2m  Xiy1—Xi—1 2m
so that
O:
o>
YT 2m
Hence, (62) and (63) yield,
101 < 2B < 4m|B; | '
(41 — x) (41 — xi—1)  (Xi41 — Xi-1)
4md; (xiy1 — xi-1)? i<5>}<
6B(xit1—xi-1)2  2m
For our purposes we apply Lemmd with o; := h;,i = 1,...,n—1, andB := 4&32.
Then by (52) and (61) we clearly have (62). Thus we Bk satisfy
—w; (0;) = - .
Xi+1 — X

so that in view of (64), we have
10;1 < 5.

Also, by (61) we see that < £.
Define
n—1 .
q(x) =) qi(d;,x), x¢€la,bl.
i=1

Then clearlyg € C[(c?b], (55) follows from (58), and (57) together with the observation that

x; is the only discontinuity of?, yields (54). Finally, by virtue of (59), (60) and (53),

n—1
Iglpxgey = || i 0is-)
i=1 [a,b]
n—1 _ n—1 ﬂ
<G| D =S - = x)+
— — Xi+l — X
i=1 [a,b] i=1 [a,b]
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Y i
~X 3 Cl ma ,u 3 6
< c(m, €,

we establish (56). This completes the proof of Lenftda [J

Proof of Theorem 5. Let
0; = S”(x,'—l—) — S"(x,-—), i=1,...,n—1.

Sinces € 43 1 0: =20, 1<i <n — 1. By Whitney’s inequality there is a polynomiaj

[x0,xn]? ”
of degree< k, satisfying

IS = Prllpx;_y, 1) SCCOk41(S, (Xig1 — xi—1): [xi-1, Xi41]).
This in turn implies by Markov’s inequality ofx;, x; 1],
|pi(xi) — 8" (xi+)|
c(k)

< ———=  max  wpy1(S, (xjr1—xj-1); [xj-1, xj11]).
S (g — )2 1<j<n-1 e S

By the same argument
Ipy(xi) — 8" (xi—)|

c(k)
max  g+1(S, (xj4+1 — xj-1); [xj-1, Xj+1]).

T (i —xi—1)? 1< j<n-1

Thus,

S <clm, k) (xip1 — xi—1) "2 max 1wk+1(5, (xXj41—xj-1); [xj—1, xj41D).

/xn—

Denote

Q:=c(m, k) max_  w1(S, (xj41—xj-1); [¥j-1, %j41])

AL

and apply Lemma.2to obtain the piecewise polynomigl Now set

S1(x) :=8x) +q(x), x € [x0,x,].

Evidently, S is a piecewise polynomial of degreek with the knotsxg, . . ., x,, satisfying
Sixi—=)=8{(xi+), i=1,...,n—1, (65)
so thatS; € C[(f?b].Also, sinces € A?XO)M, we conclude by (55) thaft] is non-decreasing

on each intervalx; 1, x;), 1<i <n. Thus combining with (65), we have th&{ is non-
decreasing on the whole, b], so thatS; € Aﬁhb]. Finally, (10) follows from (56). This
completes the proof. ]
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